【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(4,3).

(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.

(2)直接寫出該拋物線開口方向和頂點(diǎn)坐標(biāo).

(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.

【答案】(1)y=x2﹣4x+3(2)(2,﹣1)(3)見解析

【解析】

(1)把A點(diǎn)和B點(diǎn)坐標(biāo)代入y=ax2+bx+3得關(guān)于a、b的方程組,然后解方程組即可;

(2)先把一般式配成頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)解決問題;

(3)利用描點(diǎn)法畫函數(shù)圖象

(1)∵拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(4,3).

,解得

∴這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式為y=x2﹣4x+3;

(2)a=1>0,拋物線開口向上,

y=(x﹣2)2﹣1,

∴拋物線頂點(diǎn)坐標(biāo)為(2,﹣1);

(3)如圖,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(2,0),B(0,2),與x軸交于另一點(diǎn)C

(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)P是拋物線y=﹣x2+bx+c在第一象限上的點(diǎn),過點(diǎn)P分別向x軸、y軸作垂線,垂足分別為D,E,求四邊形ODPE的周長的最大值;

(3)如圖2,點(diǎn)P是拋物線y=﹣x2+bx+c在第一象限上的點(diǎn),過點(diǎn)PPNx軸,垂足為N,交ABM,連接PB,PA.設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng)△ABP的面積等于△ABC面積的時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程-(k+2)x+2k=0.

(1)試說明無論k取何值時(shí),這個(gè)方程一定有實(shí)數(shù)根;

(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個(gè)方程的兩個(gè)根,求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有A、B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-l,-2和-3.小強(qiáng)從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為a,再從B布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為b,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(a,b).

用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);

求點(diǎn)Q落在直線y=x-3上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(4,3).

(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.

(2)直接寫出該拋物線開口方向和頂點(diǎn)坐標(biāo).

(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則OAB的面積是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(2)一道數(shù)學(xué)競(jìng)賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(﹣4,0)C點(diǎn)(0,﹣4),與x軸另一個(gè)交點(diǎn)為B.

(1)求此二次函數(shù)的解析式和頂點(diǎn)D的坐標(biāo);

(2)求出A、B兩點(diǎn)之間的距離;

(3)直接寫出當(dāng)y>﹣4時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點(diǎn)A1,作正方形A1B1C1B2,延長C1B2交直線l于點(diǎn)A2,作正方形A2B2C2B3,延長C2B3交直線l于點(diǎn)A3,作正方形A3B3C3B4,…,依此規(guī)律,則A2016A2017=__

查看答案和解析>>

同步練習(xí)冊(cè)答案