【題目】某區(qū)對參加2019年中考的300名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖.

請根據(jù)圖表信息回答下列問題:

(1) __________, __________

(2)將頻數(shù)分布直方圖補充完整;

(3)若視力在4.9以上(4.9)均為正常,據(jù)以上信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少人?

【答案】(1);(2)見解析;(3)估計全區(qū)初中畢業(yè)生中視力正常的學生有900.

【解析】

1)求出總?cè)藬?shù)即可解決問題.
2)根據(jù)第四組人數(shù)畫出直方圖即可.
3)利用樣本估計總體的思想解決問題即可.

解:(1)總?cè)藬?shù)=50÷0.25=200(人),

a=200×0.25=50(人),

b=.

故答案為50,

(2)如下圖:

(3) ()

估計全區(qū)初中畢業(yè)生中視力正常的學生有900.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量減少20千克。

(1)如果該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應漲價多少元?

(2)當每千克漲價多少元時,該商場的每天盈利最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC、△BDE都是等腰直角三角形,∠ABC=∠DBE90°,連接AE、CD交于點F,連接BF.求證:

1AECD

2BF平分∠AFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)是用硬紙板做成的兩個全等的直角三角形,兩直角邊的長分別為斜邊長為(2)是以為直角邊的等腰直角三角形.請你開動腦筋,將它們拼成一個直角梯形.

(1)在圖(3)處畫出拼成的這個圖形的示意圖;

(2)利用(1)畫出的圖形證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(點A在點B的左側(cè)),點A的坐標為(﹣1,0),與y軸交于點C0,3),作直線BC.動點Px軸上運動,過點PPM⊥x軸,交拋物線于點M,交直線BC于點N,設(shè)點P的橫坐標為m

)求拋物線的解析式和直線BC的解析式;

)當點P在線段OB上運動時,求線段MN的最大值;

)當以COM、N為頂點的四邊形是平行四邊形時,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一塊直角三角形的綠地,量得兩直角邊長分別為6m8m,現(xiàn)在要將綠地擴充成等腰三角形,且擴充部分是以8m為直角邊的直角三角形,求擴充后等腰三角形綠地的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在直角坐標系中,已知A0,a),Bb,0C3,c)三點,若a,b,c滿足關(guān)系式:|a﹣2|+b﹣32+=0.

(1)求a,b,c的值.

(2)求四邊形AOBC的面積.

(3)是否存在點P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CAB延長線上一點,CD⊙O相切于點E,AD⊥CD于點D

1)求證:AE平分∠DAC

2)若AB=4,∠ABE=60°

AD的長;

求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點DAB的中點,點EAB邊上一點.

1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG

2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

同步練習冊答案