設P為等腰直角三角形ACB斜邊AB上任意一點,PE垂直AC于點E,PF垂直BC于點F,PG垂直EF于點G,延長GP并在其延長線上取一點D,使得PD=PC,試證:BC⊥BD,且BC=BD.

解:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,
∴CEPF是矩形(三角都是直角的四邊形是矩形),
∴OP=OF,∠PEF+∠3=90°,
∴∠1=∠3,
∵PG⊥EF,
∴∠PEF+∠2=90°,
∴∠2=∠3,
∴∠1=∠2,
∵△ABC是等腰直角三角形,
∴∠A=∠ABC=45°,
∴∠APE=∠BPF=45°,
∴∠APE+∠2=∠BPF+∠1,
即∠APG=∠CPB,
∵∠BPD=∠APG(對頂角相等),
∴∠BPD=∠CPB,
又∵PC=PD,PB是公共邊,
∴△PBC≌△PBD(SAS),
∴BC=BD,∠PBC=∠PBD=45°,
∴∠PBC+∠PBD=90°,
即BC⊥BD.
故證得:BC⊥BD,且BC=BD.
分析:此題關鍵是證△PBC≌△PDB,已有PC=PD,PB是公共邊,只需再證明∠BPD=∠CPB,而∠BPD=∠APG,則證明∠APG=∠CPB,進而需要證明∠1=∠2,可利用同角的余角相等證明.
點評:本題主要考查三角形全等的判定和性質(zhì),綜合利用了等腰直角三角形的性質(zhì),和矩形的判定和性質(zhì)等知識點,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1所示,直角梯形OABC的頂點A、C分別在y軸正半軸與x軸負半軸上.過點B、C作直線l.將直線l平移,平移后的直線l與x軸交于點D,與y軸交于點E.
(1)將直線l向右平移,設平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當2<t<4時,求S關于t的函數(shù)解析式;
(2)在第(1)題的條件下,當直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知點M,N的坐標分別為(0,1),(0,-1),點P是拋物線y=
14
x2
上的精英家教網(wǎng)一個動點.
(1)求證:以點P為圓心,PM為半徑的圓與直線y=-1的相切;
(2)設直線PM與拋物線的另一個交點為點Q,連接NP,NQ,求證:∠PNM=∠QNM;
(3)是否存在這樣的點P,使得△PMN為等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=12cm,BC=5cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的速度移動.如果P、Q同時出發(fā),當Q到達終點時,精英家教網(wǎng)P也隨之停止運動.用t表示移動時間,設四邊形QAPC的面積為S.
(1)試用t表示AQ、BP的長;
(2)試求出S與t的函數(shù)關系式;
(3)當t為何值時,△QAP為等腰直角三角形?并求出此時S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、設P為等腰直角三角形ACB斜邊AB上任意一點,PE垂直AC于點E,PF垂直BC于點F,PG垂直EF于點G,延長GP并在其延長線上取一點D,使得PD=PC,試證:BC⊥BD,且BC=BD.

查看答案和解析>>

同步練習冊答案