【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑作⊙O交底邊BC于D.
(1)求證:BD=CD;
(2)若AB=3,cos∠ABC=,在腰AC上取一點(diǎn)E使AE=,試判斷DE與⊙O的位置關(guān)系,并證明.
【答案】(1)證明見解析;(2)DE與⊙O相切;理由見解析;
【解析】
(1)連結(jié)AD,如圖,根據(jù)圓周角角定理,由AB為直徑得∠ADB=90°,然后根據(jù)等腰三角形的性質(zhì)可得BD=CD;
(2)連結(jié)OD,如圖,在Rt△ABD中,先利用余弦定義計(jì)算出BD=AB=1,則Cd=1,再利用勾股定理計(jì)算出AD=2,則有,加上∠DAE=∠CAD,于是可判斷△ADE∽△ACD,所以∠AED=∠ADC=90°,接著證明OD為△ABC的中位線得到OD∥AC,所以OD⊥DE,則根據(jù)切線的判定定理可判斷DE為⊙O的切線.
(1)證明:連結(jié)AD,如圖,
∵AB為直徑,
∴∠ADB=90°,
∴AD⊥BC,
而AB=AC,
∴BD=CD;
(2)解:DE與⊙O相切.理由如下:
連結(jié)OD,如圖,
在Rt△ABD中,∵cos∠ABD=,
∴BD=AB=×3=1,
∴AD=,CD=1,
∵,,
∴,
而∠DAE=∠CAD,
∴△ADE∽△ACD,
∴∠AED=∠ADC=90°,
∴DE⊥AC,
∵OA=OB,BD=CD,
∴OD為△ABC的中位線,
∴OD∥AC,
∴OD⊥DE,
∴DE為⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),如果PA+PB的最小值為,那么⊙O的直徑等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一副含和角的三角板和如圖擺放,邊與重合,.當(dāng)點(diǎn)從點(diǎn)出發(fā)沿方向滑動(dòng)時(shí),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿軸正方向滑動(dòng).
設(shè)點(diǎn)關(guān)于的函數(shù)表達(dá)式為________.
連接.當(dāng)點(diǎn)從點(diǎn)滑動(dòng)到點(diǎn)時(shí),的面積最大值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線與直線相交于點(diǎn).
(1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫出答案,不必寫過程).
(2)求的面積.
(3)若有一動(dòng)點(diǎn)沿路線運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn) 坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的直角項(xiàng)點(diǎn)在軸的正半軸上,頂點(diǎn)的縱坐標(biāo)為,,.點(diǎn)是斜邊上的一個(gè)動(dòng)點(diǎn),則的周長的最小值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連PA、PB、PC.
(1)將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△P′CB的位置(如圖1).
①設(shè)AB的長為a,PB的長為b(b<a),求△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域(圖1中陰影部分)的面積;
②若PA=2,PB=4,∠APB=135°,求PC的長.
(2)如圖2,若PA2+PC2=2PB2,請說明點(diǎn)P必在對角線AC上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1═(x>0)的圖象上,點(diǎn)A′與點(diǎn)A關(guān)于點(diǎn)O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點(diǎn)A′.
(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1、y2的圖象上.
①分別求函數(shù)y1、y2的表達(dá)式;
②直接寫出使y1>y2>0成立的x的范圍;
(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,△AA'B的面積為16,求k的值;
(3)設(shè)m=,如圖②,過點(diǎn)A作AD⊥x軸,與函數(shù)y2的圖象相交于點(diǎn)D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點(diǎn)P一定在函數(shù)y1的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是線段BC的延長線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖1,點(diǎn)D在線段BC的延長線上移動(dòng),若∠BAC=30°,則∠DCE= .
(2)設(shè)∠BAC=α,∠DCE=β:
①如圖1,當(dāng)點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com