【題目】如圖,ABC的兩條高ADBE交于點(diǎn)F,∠ABC45°,∠BAC60°

1)求證:DFDC

2)連接CF,求證:ABAC+CF

【答案】1)證明見解析;(2)證明見解析

【解析】

1)欲證明DF=DC,只要證明BDF≌△ADC即可解決問題;

2)延長(zhǎng)FEK,使得EK=EF,連接CF.想辦法證明CF=FKBK=BA即可解決問題.

1)∵ADBC

∴∠ADB=∠ADC90°,

∵∠ABC45°

∴∠DBA=∠DAB45°,

BDDA,

BEAC,

∴∠BEC90°,

∴∠DAC+C90°,∠CBE+C90°,

∴∠DAC=∠DBF

BDFADC中,

,

∴△BDF≌△ADCASA),

DFDC;

2)延長(zhǎng)FEK,使得EKEF,連接CF,

∵∠BAC60°,∠ABC45°,

∴∠ACB180°60°45°75°,

DFDC,∠FDC90°,

∴∠FCD=∠DFC45°

∴∠ECF30°,

∵∠CEF90°

CF2EF,

FK2EF

CFFK,

AEFKEFEK,

AFAK,

∴∠K=∠AFE,∠EAF=∠EAF,

∵∠ADC90°,∠ACD75°

∴∠DAC15°,

∴∠EAF=∠EAK15°,

∴∠K90°15°75°

∴∠BAK=∠BAD+DAK75°,

∴∠BAK=∠K

BABK,

ABBF+FKBF+CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條長(zhǎng)度均為2的線段和線段互相重合,將沿直線向左平移個(gè)單位長(zhǎng)度,將沿直線向右也平移個(gè)單位長(zhǎng)度,當(dāng)、是線段的三等分點(diǎn)時(shí),則的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線OB、AC相交于D點(diǎn),雙曲線y= (x>0)經(jīng)過D點(diǎn),交BC的延長(zhǎng)線于E點(diǎn),且OBAC=160,有下列四個(gè)結(jié)論:
①雙曲線的解析式為y= (x>0);②E點(diǎn)的坐標(biāo)是(5,8);③sin∠COA= ;④AC+OB=12 .其中正確的結(jié)論有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且SAOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)地摸出一個(gè)小球不放回,再隨機(jī)地摸出一個(gè)小球,則兩次摸出的小球的標(biāo)號(hào)的和為奇數(shù)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn),點(diǎn)1次向上跳動(dòng)1個(gè)單位至點(diǎn),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn),第3次向上跳動(dòng)1個(gè)單位,第4次向右跳動(dòng)3個(gè)單位,第5次又向上跳動(dòng)1個(gè)單位,第6次向左跳動(dòng)4個(gè)單位,……,依此規(guī)律跳動(dòng)下去,點(diǎn)P200次跳動(dòng)至點(diǎn)的坐標(biāo)是(

A. (51,100)B. (50,100)C. (-50,100)D. (-51,100)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高,則下列結(jié)論:
①OA=OD;
②AD⊥EF;
③AE+DF=AF+DE;
④當(dāng)∠BAC=90°時(shí),四邊形AEDF是正方形.
其中一定正確的是( )

A.①②③
B.②③④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,BC=3,AB=8,E、F為AB、CD邊上的中點(diǎn),如圖1,A在原點(diǎn)處,點(diǎn)B在y軸正半軸上,點(diǎn)C在第一象限,若點(diǎn)A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)矩形ABCD在平面上滑動(dòng),如圖2,設(shè)運(yùn)動(dòng)時(shí)間表示為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng).

(1)當(dāng)t=0時(shí),求點(diǎn)F的坐標(biāo)及FA的長(zhǎng)度;
(2)當(dāng)t=4時(shí),求OE的長(zhǎng)及∠BAO的大小;
(3)求從t=0到t=4這一時(shí)段點(diǎn)E運(yùn)動(dòng)路線的長(zhǎng);
(4)當(dāng)以點(diǎn)F為圓心,F(xiàn)A為半徑的圓與坐標(biāo)軸相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年懷柔區(qū)中考體育加試女子800米耐力測(cè)試中,同時(shí)起跑的李麗和吳梅所跑的路程與所用時(shí)間之間的函數(shù)圖象分別為線段OA和折線下列說法正確的是

A. 李麗的速度隨時(shí)間的增大而增大

B. 吳梅的平均速度比李麗的平均速度大

C. 在起跑后180秒時(shí),兩人相遇

D. 在起跑后50秒時(shí),吳梅在李麗的前面

查看答案和解析>>

同步練習(xí)冊(cè)答案