【題目】如圖,中,點在邊上,,.給出下列三組條件(每組條件中的線段的長度已知):①,;②,;③,;能使唯一確定的條件的序號為( )
A. ①② B. ①③ C. ②③ D. ①②③
科目:初中數(shù)學 來源: 題型:
【題目】如圖,曲線l是由函數(shù)y= 在第一象限內的圖象繞坐標原點O逆時針旋轉45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上的任意一點,過點A作 AB∥x軸,交另一個比例函數(shù)y2= (k<0,x<0)的圖象于點B.
(1)若S△AOB的面積等于3,則k是=;
(2)當k=﹣8時,若點A的橫坐標是1,求∠AOB的度數(shù);
(3)若不論點A在何處,反比例函數(shù)y2= (k<0,x<0)圖象上總存在一點D,使得四邊形AOBD為平行四邊形,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:點C是∠AOB的邊OB上的一點,按下列要求畫圖并回答問題.
(1)過C點畫OB的垂線,交OA于點D;
(2)過C點畫OA的垂線,垂足為E;
(3)比較線段CE,OD,CD的大小(請直接寫出結論);
(4)請寫出第(3)小題圖中與∠AOB互余的角(不增添其它字母).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°.
(1)用圓規(guī)和直尺在AC上作點P,使點P到A、B的距離相等.(保留作圖痕跡,不寫作法和證明)
(2)當滿足(1)的點P到AB、BC的距離相等時,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖是用4個全等的長方形拼成的一個“回形”正方形,圖中陰影部分面積用2種方法表示可得一個等式,這個等式為_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中有兩點M(a,b),N(c,d),規(guī)定(a,b)⊕(c,d)=(a+c,b+d),則稱點Q(a+c,b+d)為M,N的“和點”.若以坐標原點O與任意兩點及它們的“和點”為頂點能構成四邊形,則稱這個四邊形為“和點四邊形”,現(xiàn)有點A(2,5),B(﹣1,3),若以O,A,B,C四點為頂點的四邊形是“和點四邊形”,則點C的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時間 (分鐘)的函數(shù)關系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點 ,點 坐標為 ,曲線 可用二次函數(shù) ( , 是常數(shù))刻畫.
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為 千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度 , 是加速前的速度).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com