【題目】在一次綜合實(shí)踐活動(dòng)中,小明要測(cè)某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長(zhǎng)BC為80m.她先測(cè)得∠BCA=35°,然后從C點(diǎn)沿AC方向走30m到達(dá)D點(diǎn),又測(cè)得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計(jì),結(jié)果用含非特殊角的三角函數(shù)表示)

【答案】解:在Rt△ABC中,∠ACB=35°,BC=80m,
∴cos∠ACB= ,
∴AC=80cos35°,
在Rt△ADE中,tan∠ADE=
∵AD=AC+DC=80cos35°+30,
∴AE=(80cos35°+30)tan50°.
答:塔高AE為(80cos35°+30)tan50°m
【解析】根據(jù)銳角三角函數(shù)關(guān)系,得出cos∠ACB= ,得出AC的長(zhǎng)即可;利用銳角三角函數(shù)關(guān)系,得出tan∠ADE= ,求出AE即可.此題主要考查了解直角三角形的應(yīng)用,根據(jù)已知正確得出銳角三角函數(shù)關(guān)系是解題關(guān)鍵.
【考點(diǎn)精析】利用關(guān)于仰角俯角問(wèn)題對(duì)題目進(jìn)行判斷即可得到答案,需要熟知仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過(guò)點(diǎn)D作DE⊥AF,垂足為點(diǎn)E
(1)求證:DE=AB;
(2)以A為圓心,AB長(zhǎng)為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點(diǎn)E

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算
(1)計(jì)算:( 2+| ﹣2|+3tan30°
(2)先化簡(jiǎn),再求值: ÷ ,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,直線EF分別交AB,CD于點(diǎn)E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點(diǎn)P,試說(shuō)明△EPF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列解題過(guò)程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)

如圖,在ABC中,已知∠ADEB1=2,FGAB于點(diǎn)G.

求證CDAB.

證明:∵∠ADEB(已知),

),

DEBC(已證),

),

又∵∠1=2(已知),

),

CDFG ),

(兩直線平行同位角相等),

FGAB(已知),

∴∠FGB=90°(垂直的定義).

即∠CDBFGB=90°,

CDAB. (垂直的定義).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角中,AD,CE分別是的平分線,AD,CE相交于點(diǎn)F

的度數(shù);

判斷FEFD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案