【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

【答案】證明:(1)四邊形ABCD是平行四邊形,∴∠A=C,AB=CD,

ABE和CDF中,AB=CD,A=C,AE=CF,

∴△ABE≌△CDF(SAS)。

(2)四邊形ABCD是平行四邊形,ADBC,AD=BC。

AE=CF,AD﹣AE=BC﹣CF,即DE=BF。

四邊形BFDE是平行四邊形。

解析平行四邊形的性質(zhì)和判定,全等三角形的判定。

(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等的性質(zhì),即可證得A=C,AB=CD,又由AE=CF,利用SAS,即可判定ABE≌△CDF。

(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得ADBC,AD=BC,又由AE=CF,即可證得DE=BF。根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年的隨機抽取了部分學生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據(jù)相關(guān)信息,解答下列問題:

1)本次隨機抽樣的學生數(shù)是多少?A值是多少?

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?

3)根據(jù)樣本數(shù)據(jù),若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個數(shù)是( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,真命題有(

①直線外一點與直線上各點連接的所有線段中,垂線段最短;

②三角形的一個外角大于任何一個內(nèi)角;

③如果∠1和∠2是對頂角,那么;

④如果一條直線和兩條直線中的一條垂直,那么這條直線也和另一條垂直.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,過點A引射線AH,交邊CD于點H(H與點D不重合).通過翻折,使點B落在射線AH上的點G處,折痕AEBCE,延長EGCDF

(感知)(1)如圖①,當點H與點C重合時,猜想FGFD的數(shù)量關(guān)系,并說明理由.

(探究)(2)如圖②,當點H為邊CD上任意一點時,(1)中結(jié)論是否仍然成立?請說明理由.

(應用)(3)在圖②中,當DF=3,CE=5時,直接利用探究的結(jié)論,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點E,F(xiàn)分別是AB,BC邊的中點,連接AF,CE交于點M,連接BM并延長交CD于點N,連接DE交AF于點P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤SEPM= S梯形ABCD , 正確的個數(shù)有( )

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 的對稱軸為直線 ,與 軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結(jié)論:

;② 方程 的兩個根是 ;③ ;④當 時, 的取值范圍是 ;⑤ 當 時, 增大而增大;其中結(jié)論正確有.

查看答案和解析>>

同步練習冊答案