【題目】如圖,已知A、B、C、D是平面直角坐標(biāo)系中坐標(biāo)軸上的點(diǎn),且△AOB≌△COD,設(shè)直線AB的表達(dá)式為y1=ax+b,直線CD的表達(dá)式為y2=mx+n,則am= .
【答案】1
【解析】解:設(shè)點(diǎn)A的坐標(biāo)為(0,y)、點(diǎn)B的坐標(biāo)為(﹣x,0)(x、y均為正數(shù)), ∵△AOB≌△COD,
∴OC=OA,OD=OB,
結(jié)合圖形可知點(diǎn)C的坐標(biāo)為(y,0),點(diǎn)D的坐標(biāo)為(0,﹣x).
將點(diǎn)A(0,y)、B(﹣x,0)代入y1=ax+b中,
,
∴a= ;
將點(diǎn)C(y,0),D(0,﹣x)代入y2=mx+n,
,m= .
∴am= =1.
所以答案是:1.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解全等三角形的性質(zhì)(全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,AB=8.
(1)利用尺規(guī),作∠CAB的平分線,交⊙O于點(diǎn)D;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接CD,OD,若AC=CD,求∠B的度數(shù);
(3)在(2)的條件下,OD交BC于點(diǎn)E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將n個邊長都為1cm的正方形按如圖所示的方法擺放,點(diǎn)A1 , A2 , …,An分別是正方形對角線的交點(diǎn),則n個正方形重疊形成的重疊部分的面積和為( )
A.cm2
B.cm2
C.cm2
D.( )ncm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句錯誤的是( )
A.銳角的補(bǔ)角一定是鈍角
B.一個銳角和一個鈍角一定互補(bǔ)
C.互補(bǔ)的兩角不能都是鈍角
D.互余且相等的兩角都是45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(5,0),對稱軸為直線x=1,下列結(jié)論中錯誤的是( )
A.a(chǎn)bc>0
B.當(dāng)x<1時,y隨x的增大而增大
C.a(chǎn)+b+c>0
D.方程ax2+bx+c=0的根為x1=﹣3,x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖(1)是一個蒙古包的照片,這個蒙古包可以近似看成是圓錐和圓柱組成的幾何體,如圖(2)所示.
(1)請畫出這個幾何體的俯視圖;
(2)圖(3)是這個幾何體的正面示意圖,已知蒙古包的頂部離地面的高度EO1=6米,圓柱部分的高OO1=4米,底面圓的直徑BC=8米,求∠EAO的度數(shù)(結(jié)果精確到0.1°).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】各頂點(diǎn)都在方格紙格點(diǎn)(橫豎格子線的交錯點(diǎn))上的多邊形稱為格點(diǎn)多邊形.如何計算它的面積?奧地利數(shù)學(xué)家皮克(GPick,1859~1942年)證明了格點(diǎn)多邊形的面積公式,其中a表示多邊形內(nèi)部的格點(diǎn)數(shù),b表示多邊形邊界上的格點(diǎn)數(shù),S表示多邊形的面積.如圖,,,.
(1)請在圖中畫一個格點(diǎn)正方形,使它的內(nèi)部只含有4個格點(diǎn),并寫出它的面積.
(2)請在圖乙中畫一個格點(diǎn)三角形,使它的面積為,且每條邊上除頂點(diǎn)外無其它格點(diǎn).(注:圖甲、圖乙在答題紙上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com