【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.

(1)求證:DE是⊙O的切線.
(2)求DE的長.

【答案】
(1)

證明:連接OD,

∵AD平分∠BAC,

∴∠DAE=∠DAB,

∵OA=OD,∴∠ODA=∠DAO,

∴∠ODA=∠DAE,

∴OD∥AE,

∵DE⊥AC,

∴OD⊥DE,

∴DE是⊙O切線


(2)

解:過點O作OF⊥AC于點F,

∴AF=CF=3,

∴OF= = =4.

∵∠OFE=∠DEF=∠ODE=90°,

∴四邊形OFED是矩形,

∴DE=OF=4.


【解析】(1)連接OD,欲證明DE是⊙O的切線,只要證明OD⊥DE即可.(2)過點O作OF⊥AC于點F,只要證明四邊形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.本題考查切線的判定、矩形的判定和性質(zhì)、垂徑定理、勾股定理等知識,解題的關(guān)鍵是記住切線的判定方法,學(xué)會添加常用輔助線,屬于基礎(chǔ)題,中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學(xué)生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?

(2)請把折線統(tǒng)計圖(圖1)補充完整;

(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);

(4)如果這所中學(xué)共有學(xué)生1800名,那么請你估計最喜愛科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=2AB,點E,F(xiàn)分別是AD,BC的中點,連接AF與BE,CE與DF分別交于點M,N兩點,則四邊形EMFN是(  )

A. 正方形 B. 菱形 C. 矩形 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,點在線段的延長線上,連接于點,,點的中點.

)求證:

)若,,點的中點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點EBC邊上一點,連接AE,把B沿AE折疊,使點B落在點B處,當(dāng)CEB為直角三角形時,BE的長為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC與CDE都是等邊三角形,點E、F分別為AC、BC的中點。

(1) 求證:四邊形EFCD是菱形;(2)如果AB=10,求D、F兩點間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,反比例函數(shù)y= 與正比例函數(shù)y=bx在同一坐標(biāo)系內(nèi)的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

已知:如圖1,直線ABCD,點EAB、CD之間的一點,連接BE、DE得到∠BED

求證:∠BED =B+D.

1

小冰是這樣做的:

證明:過點EEFAB,則有∠BEF=B

ABCD,EFCD

∴∠FED=D

∴∠BEF +FED =B+D

即∠BED=B+D

請利用材料中的結(jié)論,完成下面的問題:

已知:直線 ABCD,直線MN分別與AB、CD交于點E、F

(1)如圖2,BEF和∠EFD的平分線交于點G猜想∠G的度數(shù),并證明你的猜想;

(2)如圖3,EG1EG2為∠BEF內(nèi)滿足∠1=2的兩條線,分別與∠EFD的平分線交于點G1G2求證:∠FG1 E+G2=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.

(1)求證:AE=AF;
(2)求證:BE= (AB+AC).

查看答案和解析>>

同步練習(xí)冊答案