【題目】已知二次函數(shù)y=ax2+bx+c的圖象如下,則一次函數(shù)y=ax﹣2b與反比例函數(shù)y= 在同一平面直角坐標系中的圖象大致是( )
A.
B.
C.
D.
【答案】C
【解析】解:二次函數(shù)y=ax2+bx+c的圖象開口向下可知a<0,對稱軸位于y軸左側(cè),a、b同號,即b<0.圖象經(jīng)過y軸正半可知c>0,
由a<0,b<0可知,直線y=ax﹣2b經(jīng)過一、二、四象限,
由c>0可知,反比例函數(shù)y= 的圖象經(jīng)過第一、三象限,
故選:C.
【考點精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象的相關(guān)知識點,需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,∠BAC=60,BD、CE為高,F(xiàn)為BC的中點,連接DE、DF、EF,則結(jié)論:①DF=EF;②AD∶AB=AE∶AC;③△DEF是等邊三角形;④BE+CD=BC;⑤當∠ABC=45時,BE=DE中,一定正確的有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點A在原點,B、C坐標分別為B(3,0),C(2,2),將△ABC向左平移1個單位后再向下平移2單位,可得到△A′B′C′.
(1)請畫出平移后的△A′B′C′的圖形;
(2)寫出△A′B′C′各個頂點的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于B、C兩點,且D、E分別為頂點.則下列結(jié)論: ①a= ;②AC=AE;③△ABD是等腰直角三角形;④當x>1時,y1>y2
其中正確結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點(點P不與點B、D重合),PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③僅有當∠DAP=45°或67.5°時,△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正確有( )個.
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于F.
(1)若AB=2CD;
①求證:BC=2BF;
②連CE,若DE=6,CE=,求EF的長;
(2)若AB=6,則CE的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長方形紙片ABCD的長AD=9cm,寬AB=3cm,將其折疊,使點D與點B重合.
求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點B作BE⊥CD,垂足為E,連結(jié)AE.F為AE上一點,且∠BFE=∠C.
(1)ΔABF與ΔADE相似嗎?說說你的理由.
(2)若AB=4,∠BAE=30°,求AE的長.
(3)在(1)、(2)的條件下,若AD=3,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com