【題目】如圖,直線OD與x軸所夾的銳角為30°,OA1的長(zhǎng)為2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三邊形,點(diǎn)A1、A2、A3…An1在x軸正半軸上依次排列,點(diǎn)B1、B2、B3…Bn在直線OD上依次排列,那么點(diǎn)B2的坐標(biāo)為____,點(diǎn)Bn的坐標(biāo)為____

【答案】(3,)(3×2n2×2n2

【解析】

根據(jù)等邊三角形的性質(zhì)和∠B1OA2=30°,可求得∠B1OA2=A1B1O=30°,可求得OA2=2OA1=2,同理可求得OAn=2n1,再求出△AnBnAn+1的邊長(zhǎng),進(jìn)一步可求得點(diǎn)Bn的坐標(biāo)

∵△A1B1A2為等邊三角形,∴∠B1A1A2=60°.

∵∠B1OA2=30°,∴∠B1OA2=A1B1O=30°,可求得OA2=2OA1=2,同理可求得OAn=2n1

∵∠BnOAn+1=30°,BnAnAn+1=60°,∴∠BnOAn+1=OBnAn=30°,BnAn=OAn=2n1,即△AnBnAn+1的邊長(zhǎng)為2n1,則可求得其高為×2n1=×2n2∴點(diǎn)Bn的橫坐標(biāo)為×2n1+2n1=×2n1=3×2n2,∴點(diǎn)Bn的坐標(biāo)為(3×2n2×2n2),點(diǎn)B2的坐標(biāo)為(3).

故答案為:3,);(3×2n2,×2n2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABx軸交于點(diǎn)C,與y軸交于點(diǎn)B,點(diǎn)A(1,3),點(diǎn)B(0,2).連接AO

(1)求直線AB的解析式;

(2)求三角形AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角ABC中,AC是最短邊.以AC為直徑的⊙O,交BCD,過(guò)OOEBC,交ODE,連接AD、AE、CE.

(1)求證:∠ACE=DCE;

(2)若∠B=45°,BAE=15°,求∠EAO的度數(shù);

(3)若AC=4,,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在正方形ABCDAD上,連接PB.過(guò)點(diǎn)B作一條射線與邊DC的延長(zhǎng)線交于點(diǎn)Q,使得∠QBE=∠PBC,其中E是邊AB延長(zhǎng)線上的點(diǎn),連接PQ.若PQ2PB2+PD2+2,則△PAB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在小山的東側(cè)A點(diǎn)有一個(gè)熱氣球,由于受風(fēng)的影響,以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達(dá)C處,此時(shí)熱氣球上的人測(cè)得小山西側(cè)B點(diǎn)的俯角為30°,則小山東西兩側(cè)A,B兩點(diǎn)間的距離為( 。┟祝

A. 750 B. 375 C. 375 D. 750

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l過(guò)點(diǎn)M(3,0),且平行于y軸.

(1)如果△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對(duì)稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對(duì)稱圖形是△A2B2C2,寫出△A2B2C2的三個(gè)頂點(diǎn)的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)是(﹣a,0),其中a>0,點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)是P1,點(diǎn)P1關(guān)于直線l的對(duì)稱點(diǎn)是P2,求PP2的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE,點(diǎn)EBC上.過(guò)點(diǎn)DDFBC,連接DB.

求證:(1)ABD≌△ACE;

(2)DF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,EGAD,分別交AB,ADAC,BC的延長(zhǎng)線于E,H,F,G

已知四個(gè)式子:①∠1 (2+∠3);②∠1(3-∠2);③∠4 (3-∠2);④∠41.其中正確的式子有______(填寫序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案