【題目】如圖,直線AB分別交y軸、x軸于A、B兩點,OA=2,tan∠ABO= ,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN的長度l有最大值?最大值是多少?

【答案】
(1)

解:∵在Rt△AOB中,tan∠ABO= ,OA=2,

= ,

∴0B=4,

∴A(0,2),B(4,0),

把A、B的坐標代入y=﹣x2+bx+c得:

解得:b= ,

∴拋物線的解析式為y=﹣x2+ x+2,

設直線AB的解析式為y=kx+e,把A、B的坐標代入得: ,

解得:k=﹣ ,e=2,

所以直線AB的解析式是y=﹣ x+2


(2)

解:過點D作DE⊥y軸于點E,

由(1)拋物線解析式為y=﹣x2+ x+2=﹣(x﹣ 2+ ,

即D的坐標為( , ),

則ED= ,EO=

AE=EO﹣OA= ,

SABD=S梯形DEOB﹣SDEA﹣SAOB= ×( +4)× × ×4×2=


(3)

解:由題可知,M、N橫坐標均為t.

∵M在直線AB:y=﹣ x+2上

∴M(t,﹣ t+2)

∵N在拋物線y=﹣x2+ x+2上

∴M(t,﹣t2+ t+2),

∵作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N,

∴MN=﹣t2+ t+2﹣(﹣ +2)=﹣t2+4t=﹣(t﹣2)2+4,

其中0<t<4,

∴當t=2時,MN最大=4,

所以當t=2時,MN的長度l有最大值,最大值是4


【解析】(1)求出OB,把A、B的坐標代入y=﹣x2+bx+c和y=kx+e求出即可;(2)求出D的坐標,再根據(jù)面積公式求出即可;(3)求出M、N的坐標,求出MN的值,再化成頂點式,即可求出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為減少環(huán)境污染,自2008年6月1日起,全國的商品零售場所開始實行“塑料購物袋有償使用制度”(以下簡稱“限塑令”).某班同學于6月上旬的一天,在某超市門口采用問卷調查的方式,隨機調查了“限塑令”實施前后,顧客在該超市用購物袋的情況,以下是根據(jù)100位顧客的100份有效答卷畫出的統(tǒng)計圖表的一部分:
“限塑令”實施后,塑料購物袋使用后的處理方式統(tǒng)計表:

處理方式

直接丟棄

直接做垃圾袋

再次購物使用

其它

選該項的人數(shù)占
總人數(shù)的百分比

5%

35%

49%

11%

請你根據(jù)以上信息解答下列問題:
(1)補全圖1,“限塑令”實施前,如果每天約有2 000人次到該超市購物.根據(jù)這100位顧客平均一次購物使用塑料購物袋的平均數(shù),估計這個超市每天需要為顧客提供多少個塑料購物袋?
(2)補全圖2,并根據(jù)統(tǒng)計圖和統(tǒng)計表說明,購物時怎樣選用購物袋,塑料購物袋使用后怎樣處理,能對環(huán)境保護帶來積極的影響.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=∠D=60°,∠BAC=∠ACD=90°,點E為邊AB上一點,AB=3AE=3cm,動點P從B點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,設運動時間為t秒.

(1)求證四邊形ABCD是平行四邊形;
(2)當△BEP為等腰三角形時,求t2﹣31t的值;
(3)當t=4時,把△ABP沿直線AP翻折,得到△AFP,求△AFP與ABCD重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點C是線段AB上的一點,點D是線段AB的中點,點E是線段BC的中點.

(1)當AC=10,BC=8時,求線段DE的長度;

(2)當AC=m,BC=n(m>n)時,求線段DE的長度;

(3)從(1)(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律?請直接寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強公民的節(jié)約意識,合理利用天然氣資源,某市自11日起對市區(qū)民用管道天然氣價格進行調整,實行階梯式氣價,調整后的收費價格如表所示:

每月用氣量

單價(元/m3

不超出80m3的部分

2.5

超出80m3不超出130m3的部分

a

超出130m3的部分

a+0.5

(1)若甲用戶3月份用氣125m3,繳費335元,求a的值;

(2)在(1)的條件下,若乙用戶3月份繳費392元,則乙用戶3月份的用氣量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,我市從201271日起,居民用電實行一戶一表階梯電價,分三個檔次收費,第一檔是用電量不超過180千瓦時實行基本電價,第二、三檔實行提高電價,具體收費情況如圖的折線圖,請根據(jù)圖象回答下列問題;

(1)當用電量是180千瓦時時,電費是__________元;

(2)第二檔的用電量范圍是__________

(3)“基本電價__________/千瓦時;

(4)小明家8月份的電費是3285元,這個月他家用電多少千瓦時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上A 點對應的數(shù)為﹣5,B 點在A 點右邊,電子螞蟻甲、乙在B分別以2個單位/秒、1個單位/秒的速度向左運動,電子螞蟻丙在A 3個單位/秒的速度向右運動.

(1)若電子螞蟻丙經過5秒運動到C 點,求C 點表示的數(shù);

(2)若它們同時出發(fā),若丙在遇到甲后1秒遇到乙,求B 點表示的數(shù);

(3)在(2)的條件下,設它們同時出發(fā)的時間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你認真閱讀下面關于這個圖的探究片段,完成所提出的問題.

1)探究1:小強看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AEEF所在的兩個三角形全等,但ABEECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,因此可以選取AB的中點M,連接EM后嘗試著去證AEMEFC就行了,隨即小強寫出了如下的證明過程:

證明:如圖1,取AB的中點M,連接EM

∵∠AEF=90°

∴∠FEC+AEB=90°

又∵∠EAM+AEB=90°

∴∠EAM=FEC

∵點E,M分別為正方形的邊BCAB的中點

AM=EC

又可知BME是等腰直角三角形

∴∠AME=135°

又∵CF是正方形外角的平分線

∴∠ECF=135°

∴△AEM≌△EFCASA

AE=EF

2)探究2:小強繼續(xù)探索,如圖2,若把條件E是邊BC的中點改為E是邊BC上的任意一點,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結論.

3)探究3:小強進一步還想試試,如圖3,若把條件E是邊BC的中點改為E是邊BC延長線上的一點,其余條件仍不變,那么結論AE=EF是否成立呢?若成立請你完成證明過程給小強看,若不成立請你說明理由.

查看答案和解析>>

同步練習冊答案