【題目】解方程:x2﹣1=2(x+1).

【答案】解:∵x2﹣1=2(x+1),
∴(x+1)(x﹣1)=2(x+1),
∴(x+1)(x﹣3)=0,
∴x1=﹣1,x2=3
【解析】首先把x2﹣1化為(x+1)(x﹣1),然后提取公因式(x+1),進(jìn)而求出方程的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,AB=8,∠BAD=60°,點(diǎn)E從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),過(guò)點(diǎn)EEFAD于點(diǎn)F,作EGADAC于點(diǎn)G,過(guò)點(diǎn)GGHADAD(或AD的延長(zhǎng)線)于點(diǎn)H,得到矩形EFHG,設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t

1)求線段EF的長(zhǎng)(用含t的代數(shù)式表示);

2)求點(diǎn)H與點(diǎn)D重合時(shí)t的值;

3)設(shè)矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求St之間的函數(shù)關(guān)系式;

4)矩形EFHG的對(duì)角線EHFG相交于點(diǎn)O′,當(dāng)OO′∥AD時(shí),t的值為 ;當(dāng)OO′⊥AD時(shí),t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是BA延長(zhǎng)線上一點(diǎn),PC是⊙O的切線,切點(diǎn)為C,過(guò)點(diǎn)B作BD⊥PC交PC的延長(zhǎng)線于點(diǎn)D,連接BC.求證:

(1)∠PBC=∠CBD;

(2)=ABBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABDC,ACBD相交于點(diǎn)O,ECD上一點(diǎn),FOD上一點(diǎn),且∠1=A

1)求證:FEOC;(2)若∠B=40°,1=60°,求∠OFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果|﹣a|=a,則下列a的取值不能使這個(gè)式子成立的是( �。�
A.0
B.1
C.2
D.a取任何負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-3的絕對(duì)值是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,設(shè)△ABC的面積為S,周長(zhǎng)為l

(1)填表:

三邊ab、c

3、4、5

2

5、12、13

4

8、15、17

6

(2)如果,觀察上表猜想: (用含有m的代數(shù)式表示).

(3)證明(2)中的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,點(diǎn)D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓

(1)求證:AC是⊙O的切線;

(2)當(dāng)BD是⊙O的直徑時(shí)(如圖2),求∠CAD的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在處,AD于點(diǎn)E

(1)試判斷△BDE的形狀,并說(shuō)明理由;

(2)若,,求△BDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案