【題目】如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i10.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點EA,B,CD,E均在同一平面內),在E處處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為__米.(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°≈0.45

【答案】21.7

【解析】

BMEDED的延長線于M,CNDMN.首先解直角三角形RtCDN,求出CN,DN,再根據(jù)tan24°=,構建方程即可解決問題.

BMEDED的延長線于M,CNDMN

Rt△CDN中,

,設CN4k,DN3k

CD10,

3k2+4k2100,

k2

CN8,DN6,

四邊形BMNC是矩形,

BMCN8BCMN20,EMMN+DN+DE66,

Rt△AEM中,tan24°,

∴0.45,

AB21.7(米),

故答案是:21.7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對角線AC、BD相交于點O,將對角線AC所在的直線繞點O順時針旋轉角α0°<α<90°)后得直線l,直線lADBC兩邊分別相交于點E和點F

1)求證:△AOE≌△COF;

2)當α=30°時,求線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位750名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:

(1)補全條形統(tǒng)計圖;

(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)估計該單位750名職工共捐書多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______;

2)扇形統(tǒng)計圖中了解很少部分所對應扇形的圓心角的度數(shù)為______

3)若該中學共有學生1800人,根據(jù)上述調查結果,可以估計出該學校學生中對校園安全知識達到非常了解基本了解程度的總人數(shù)為______人;

4)若從對校園安全知識達到非常了解程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABC中,B90°,以點A為圓心任意長為半徑畫弧,與AB,AC分別交于點M,N,分別以點M,N為圓心大于長為半徑畫弧,兩弧交于點P,且點P剛好落在邊BC上,AB10cm,下列說法中:

ABAD;②AP平分∠BAC;③△PDC的周長是;④ANND;

正確的是( ).

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小松想利用所學數(shù)學知識測量學校旗桿高度,如圖,旗桿AB的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小松拿起繩子末端,后退至E處,并拉直繩子,此時繩子末端D距離地面2m且繩子與水平方向成45°角.求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=BC=2ABFAD的中點,作CEAB,垂足E在線段AB上,連接EF、CF

1)若∠ADC=80°,求∠ECF;

2)求證:∠ECF=CEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OTRtABO斜邊AB上的高線,AO=BO.以O為圓心,OT為半徑的圓交OA于點C,過點C作⊙O的切線CD,交AB于點D.則下列結論中錯誤的是( 。

A.DC=DTB.AD=DTC.BD=BOD.2OC=5AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AB⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DBDB的延長線于點E

1)如圖1,判斷直線CE⊙O的位置關系,并說明理由.

2)如圖2,若tan∠BCE,連BC、CD,求cos∠BCD的值.

查看答案和解析>>

同步練習冊答案