精英家教網(wǎng)如圖,DE是△ABC的中位線,△ADE的面積是3cm2,則四邊形DBCE的面積是(  )
A、9cm2B、6cm2C、12cm2D、3cm2
分析:由DE是△ABC的中位線得到DE∥BC,接著得到△ADE∽△ABC,然后利用相似三角形的性質(zhì)和已知條件可以求解.
解答:解:∵DE是△ABC的中位線,
∴DE∥BC,
∴△ADE∽△ABC,
S△ADE:S△ABC=(
DE
BC
)2
=
1
4
,
又△ADE的面積是3cm2
∴△ABC的面積為12cm2,
∴四邊形DBCE的面積是12-3=9cm2
故選A.
點(diǎn)評(píng):此題主要考查了三角形的中位線定理和相似三角形的判定與性質(zhì),解題時(shí)首先利用中位線定理得到相似三角形,然后利用相似三角形的性質(zhì)即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,DE是△ABC的中位線,若AD=4,AE=5,BC=12,則△ADE的周長(zhǎng)為( 。
A、7.5B、15C、30D、24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,若BC=6,則DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,則△ADE和四邊形BCED的面積之比為( 。
A、1:2B、1:3C、1:4D、以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,F(xiàn)G是梯形BCED的中位線,若BC=16cm,則FG的長(zhǎng)是(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、已知:如圖,DE是△ABC的中位線,點(diǎn)P是DE的中點(diǎn),CP的延長(zhǎng)線交AB于點(diǎn)Q,那么S△DPQ:S△ABC=
1:24

查看答案和解析>>

同步練習(xí)冊(cè)答案