【題目】用指定的方法解方程:

1x-2=x(x-2)(因式分解法)

2(用配方法)

3(用公式法)

4(用合適的方法)

【答案】1x1=1 x2=2;2x1=3 ,x2=-1;3;(4) x1=- ,x2=-5

【解析】

1)先移項再分解因式,即可得出兩個一元一次方程,求出方程的解即可.

(2)根據(jù)配方法的步驟,求出方程的解即可.

(3) 先求出b2-4ac的值,再代入公式求出即可;

(4)利用因式分解解方程

解:(1x-2=x(x-2)

x-2)(1-x=0,
x-2=01-x=0,
x1=2,x2=1

(2)

x2-2x=3,
x2-2x+1=4

x-12=4,

x-1=

x-1=2x-1=-2

x1=3,x2=-1;

(3)
a=2,b=-9,c=8
∴△=b2-4ac=-92-4×2×8=170


x-2+2x+3)(x-2-2x-3=0,
3x+1)(-x-5=0,
3x+1=0-x-5=0,
x1=,x2=-5;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將菱形紙片ABCD折疊,使點A恰好落在菱形的對稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,A=120°,則EF的長為( 。

A. 2 B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一段120m的籬笆,準(zhǔn)備用這些籬笆借助一段墻角圍成如圖所示兩塊面積相同的矩形場地養(yǎng)雞.

1)如圖所示,若圍成的場地總面積為1750m2,則該場地的寬(圖中縱向)應(yīng)為多少?

2)能不能圍成面積為2000m2的場地?若能,求出此時籬笆的寬;若不能,求圍成場地面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A ,則此螞蟻爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-5x軸交于A(-1,0),B(5,0)兩點,與y軸交與點C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點Dy軸上的點,且以B、C、D為頂點的三角形與△ABC相似,求點D的坐標(biāo);

(3)如圖2,CE//x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC、CE分別相交于點FG,試探求當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標(biāo)及最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點,DECF交于點G

1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

2)如圖2,若四邊形ABCD是矩形,且DECF,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,過點C的直線MNABDAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CDBE

1)求證:CEAD;

2)當(dāng)DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉(zhuǎn),得△A′BO′,點 A、O 旋轉(zhuǎn)后的對應(yīng)點為 A′、O′,記旋轉(zhuǎn)角為ɑ.

(1)如圖 1,若ɑ=90°,求 AA′的長;

(2)如圖 2,若ɑ=120°,求點 O′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

同步練習(xí)冊答案