【題目】如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α45°,從樓底B1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號).

【答案】(6+2)米

【解析】

根據(jù)題意求出∠BAD=ADB=45°,進而根據(jù)等腰直角三角形的性質(zhì)求得FD,在RtPEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在RtPCG中,繼而可求出CG的長度.

由題意可知∠BAD=ADB=45°

FD=EF=6米,

RtPEH中,

tanβ==,

BF==5,

PG=BD=BF+FD=5+6,

tanβ= ,

CG=5+6·=5+2,

CD=6+2)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對全班45名學(xué)生進行了一次體育模擬測試(得分均為整數(shù)),成績滿分為10分,1班的體育委員根據(jù)這次測試成績,制作了統(tǒng)計圖和分析表如下:

初二1班體育模擬測試成績分析表

根據(jù)以上信息,解答下列問題:

1)這個班共有男生____人,共有女生____人;

2)補全初二1班體育模擬測試成績分析表.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,拋物線yax2+bxx軸交于點A1,0)和點B(﹣3,0).繞點A旋轉(zhuǎn)的直線lykx+b1交拋物線于另一點D,交y軸于點C

1)求拋物線的函數(shù)表達式;

2)當點D在第二象限且滿足CD5AC時,求直線l的解析式;

3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;

4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標為4,點Q在拋物線上,當直線ly軸的交點C位于y軸負半軸時,是否存在以點A,D,PQ為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D、E分別在邊AB、AC上,AE2ADAB,∠ABE=∠ACB

1)求證:DEBC;

2)如果SADES四邊形DBCE18,求SADESBDE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙OD,則CD長為( )

A. 7 B. C. D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)用配方法推導(dǎo)一元二次方程axbxc0(a≠0)的求根公式時,對于b24ac0的情況,她是這樣做的:

(1)嘉淇的解法從第 步開始出現(xiàn)錯誤;事實上,當b24ac0時,方程axbxc0(a≠0)的求根公式是 .

2)用配方法解方程:x22x240.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建國家衛(wèi)生城市,進一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府擬對部分路段的人行道地磚、花池、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個工程隊有能力承包這個工程.經(jīng)調(diào)查知道:乙隊單獨完成此項工程的時間比甲隊單獨完成多用25天,甲、乙兩隊合作完成工程需要30天,甲隊每天的工程費用2500元,乙隊每天的工程費用2000元.

1)甲、乙兩個工程隊單獨完成各需多少天?

2)請你設(shè)計一種符合要求的施工方案,并求出所需的工程費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017327日是全國中小學(xué)生安全教育日,某校為加強學(xué)生的安全意識,組織了全校學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整致,滿分為10分) 進行統(tǒng)計,繪制了圖中兩幅不完整的統(tǒng)計圖.

(1)a=_____,n=_____;

(2)補全頻數(shù)直方圖;

(3)該校共有2000名學(xué)生.若成績在70分以下(含70分)的學(xué)生安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型超市從生產(chǎn)基地購進一批水果,運輸過程中質(zhì)量損失10%,假設(shè)不計超市其他費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎(chǔ)上應(yīng)至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

同步練習(xí)冊答案