【題目】已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在邊BC上,OE⊥AB,OF⊥AC,垂足分別為E,F.求證:AB=AC;
(2)如圖,若點O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.
【答案】(1)見解析;(2)見解析;(3)不一定成立,見解析.
【解析】
(1)求證AB=AC,就是求證∠B=∠C, 利用斜邊直角邊定理(HL)證明Rt△OEB≌Rt△OFC即可;
(2)首先得出Rt△OEB≌Rt△OFC,則∠OBE=∠OCF,由等邊對等角得出∠OBC=∠OCB,進(jìn)而得出∠ABC=∠ACB,由等角對等邊即可得AB=AC;
(3)不一定成立,當(dāng)∠A的平分線所在直線與邊BC的垂直平分線重合時,有AB=AC;否則,AB≠AC.
(1)證明: ∵點O在邊BC上,OE⊥AB,OF⊥AC,點O到△ABC的兩邊AB,AC所在直線的距離相等,
∴OE=OF,
在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠ABC=∠ACB,
∴AB=AC;
(2)證明:過點O分別作OE⊥AB于E,OF⊥AC于F,
由題意知,OE=OF.∠BEO=∠CFO=90°,
∵在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠OBE=∠OCF,
又∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;
(3)解:不一定成立,當(dāng)∠A的平分線所在直線與邊BC的垂直平分線重合時AB=AC,否則AB≠AC.(如示例圖)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是弧BD的中點,CE⊥AB于點F.
(1)求證:BF=CF;
(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+b交x軸于點A,交y軸于點B,直線y=2x﹣4交x軸于點D,與直線AB相交于點C(3,2).
(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集;
(2)若點A的坐標(biāo)為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個平行四邊形的內(nèi)角平分線與邊相交,并且這條邊被分成 3、5 兩段,那么這個平行四邊形的周長為 ______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形 ABCD 中,AD//BC,AB=AD=CD=13,AE⊥BC,垂足為 E,AE=12,求邊 BC 的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接祖國七十周年慶典,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運16趟可完成,需支付運費5400元.已知甲、乙兩車單獨運完此垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟;
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com