【題目】如圖所示,已知∠DAB=∠DCB,AF平分∠DAB,CE平分∠DCB,∠FCE=∠CEB,試說明:AF∥CE。

解:(1)因為∠DAB=∠DCB( ),

AF平分∠DAB,

所以_____=∠DAB( ),

又因為CE平分∠DCB,

所以∠FCE=_____( ),

所以∠FAE=∠FCE。

因為∠FCE=∠CEB,

所以______=________

所以AF∥CE( )

【答案】詳見解析.

【解析】

利用角平線的性質和等量代換,根據(jù)已知條件,得出∠FAE=CEB,判斷得出AFCE,證得結論解決問題.

因為∠DAB=DCB(已知),
又因為AF平分∠DAB,
所以∠FAE=DAB(角平分線的性質).
又因為CE平分∠DCB,
所以∠FCE=DCB(角平分線的性質).
所以∠FAE=FCE.
因為∠FCE=CEB,
所以∠FAE=CEB,
所以AFCE(同位角相等,兩直線平行).
故答案是:已知;∠FAE,角平分線的性質;DCB,角平分線的性質;∠FAE,CEB;同位角相等,兩直線平行.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥ABD,CE△ABC的角平分線.

(1)求∠DCE的度數(shù).

(2)若∠CEF=135°,求證:EF∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BEAC相交于點M,則∠ADM的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結果精確到0.1米).參考數(shù)據(jù): ≈1.73, ≈1.41.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.

(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是( 。

A. AB//DC,AD//BC B. AB//DC,AD=BC

C. AO=CO,BO=DO D. AB=DC,AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎.該打車方式的計價規(guī)則如圖①所示,若車輛以平均速度vkm/h行駛了skm,則打車費用為(ps+60q·)元(不足9元按9元計價).小明某天用該打車方式出行,按上述計價規(guī)則,其打車費用y(元)與行駛里程x(km)的函數(shù)關系也可由如圖②表示.

(1)當x≥6時,求yx的函數(shù)關系式.

(2)若p=1,q=0.5,求該車行駛的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,DF的中位線,點C關于DF的對稱點為E,以DE,EF為鄰邊構造矩形DEFG,DGBC于點H,連結CG

求證:

CG的長.

的邊上取一點P,在矩形DEFG的邊上取一點Q,若以PQ,CG為頂點的四邊形是平行四邊形,求出所有滿足條件的平行四邊形的面積.

內(nèi)取一點O,使四邊形AOHD是平行四邊形,連結OA,OB,OC,直接寫出,的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是⊙O的直徑,弦AB⊥CD于點G,直線EF與⊙O相切于點D,則下列結論中不一定正確的是(
A.AG=BG
B.AB∥EF
C.AD∥BC
D.∠ABC=∠ADC

查看答案和解析>>

同步練習冊答案