【題目】定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的“三階等腰線”.
(1)請你在圖1,圖2中用兩種不同的方法畫出頂角為36°的等腰三角形的“三階等腰線”,并標(biāo)注每個等腰三角形頂角的度數(shù).(若兩種方法分得的三角形成3對全等三角形,則視為同一種).
圖1 圖2 備用1 備用2
(2)△ABC中,∠B=36°,AD和DE是△ABC的“三階等腰線”,點D在BC邊上,點E在AC邊上,且AD=BD,DE=CE,設(shè)∠C=x°,試畫出示意圖,并求出x所有可能的值.
【答案】(1)畫圖見解析;(2)滿足條件的x=24或 36.
【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)和三階等腰線的定義: ①可以作兩底角角平分線, ②先作底角角平分線,再作平行線,
(2)先根據(jù)三角形內(nèi)角和,等腰三角形的性質(zhì)和三階等腰線的定義,畫滿足要求的圖形,然后根據(jù)等腰三角形的性質(zhì)用x表示出三角形的內(nèi)角,利用三角形內(nèi)角和列出關(guān)于x的方程,解方程即可.
試題解析:(1)如圖所示:
(2)①當(dāng)AD=AE時,
∵2x+x=36+36,
∴x=24.
②當(dāng)AD=DE時,
∵36+36+2x+x=180,
∴x=36.
③當(dāng)EA=DE時,
∵90- x+36+36+x=180,
∴x不存在,應(yīng)舍去.
綜合上述:滿足條件的x=24或 36.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地連續(xù)九天的最高氣溫統(tǒng)計如下表:
最高氣溫(℃) | 22 | 23 | 24 | 25 |
天數(shù) | 1 | 2 | 2 | 4 |
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是( 。
A. 24,25 B. 24.5,25 C. 25,24 D. 23.5,24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形紙片ABC中,∠C=90°,∠A=30°,AC=3,折疊該紙片,如圖,使點A和點B重合,折痕與AB、AC分別相交于點D和點E,折痕DE的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點O作EF∥AB交BC于F,交AC于E,過點O作OD⊥BC于D,下列四個結(jié)論:
①∠AOB=90°+∠C;②AE+BF=EF;③當(dāng)∠C=90°時,E,F分別是AC,BC的中點;④若OD=a,CE+CF=2b,則S△CEF=ab.其中正確的是( 。
A. ①② B. ③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點P在弧AB上(不含點A、B),把△AOP沿OP對折,點A的對應(yīng)點C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當(dāng)P、C都在AB上方時(如圖3),過C點作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,且CD=24,點M在⊙O上,MD經(jīng)過圓心O,聯(lián)結(jié)MB.
(1)若BE=8,求⊙O的半徑;
(2)若∠DMB=∠D,求線段OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com