【題目】如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長(zhǎng)是16cm,那么四邊形ABFD的周長(zhǎng)是(
A.16cm
B.18cm
C.20cm
D.21cm

【答案】C
【解析】解:∵△ABE向右平移2cm得到△DCF,

∴EF=AD=2cm,AE=DF,

∵△ABE的周長(zhǎng)為16cm,

∴AB+BE+AE=16cm,

∴四邊形ABFD的周長(zhǎng)=AB+BE+EF+DF+AD

=AB+BE+AE+EF+AD

=16cm+2cm+2cm

=20cm.

故選C.

【考點(diǎn)精析】關(guān)于本題考查的平移的性質(zhì),需要了解①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD為菱形,點(diǎn)P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn).

1)如圖1,連接AP并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)E,連接 PC,求證AEB=PCD.

2)如圖1,當(dāng)PA=PDPCBE時(shí),求∠ABC的度數(shù).

3)連接AP并延長(zhǎng)交射線BC于點(diǎn)E,連接 PC,若∠ABC=90°ΔPCE是等腰三角形,求得∠PEC的度數(shù) 3 直接寫出結(jié)果,不寫過程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車以35千米/時(shí)的速度勻速行駛,行駛路程S(千米)與行駛時(shí)間t(時(shí))之間的關(guān)系式為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(2x+3)(x-1)-(x-3)2 = (x+2)(x-2)-29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知xy,m≠0,則下列說法中,正確的是( 。

A.m+xm+yB.mxmyC.mxmyD.m2xm2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義運(yùn)算:ab=a(1b).若a,b是方程x2x+m=0(m0)的兩根,則bbaa的值為

A. 0 B. 1 C. 2 D. m有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)

⑴畫出將△ABC向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1

⑵畫出將△ABC繞原點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°得到△A2B2O;

⑶在x軸上存在一點(diǎn)P,滿足點(diǎn)PA1與點(diǎn)A2距離之和最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的三個(gè)內(nèi)角之比為1∶3∶5,那么這個(gè)三角形的最大內(nèi)角為_______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b為有理數(shù),若a2=b2,則ab的關(guān)系是

A.相等B.互為相反數(shù)C.互為倒數(shù)D.相等或互為相反數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案