(本題10分)如圖,在Rt△ABC中,∠B=90°,AB=1,BC=,以點C為圓心,CB為半徑的弧交CA于點D;以點A為圓心,AD為半徑的弧交AB于點E.
(1)求AE的長度;
(2)分別以點A、E為圓心,AB長為半徑畫弧,兩弧交于點F(F與C在AB兩側(cè)),連接AF、EF,設(shè)EF交弧DE所在的圓于點G,連接AG,
① 求證:△AEG∽△FEA;
② 試猜想∠EAG的大小,并說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.
1.(1)求點P的坐標(biāo).
2.(2)求△APB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,P是雙曲線的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,設(shè)點P的坐標(biāo)為(,).
(1)求當(dāng)為何值時,⊙P與直線相切,并求點P的坐標(biāo).
(2)直接寫出當(dāng)為何值時,⊙P與直線相交、相離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=- x- 與⊙M相切于點H,交x軸于點E,交y軸于點F.
1.(1)請直接寫出OE、⊙M的半徑r、CH的長;(3分)
2.(2)如圖1,弦HQ交x軸于點P,且DP:PH=3:2,求COS∠QHC的值;(3分)
3.(3)如圖2,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北武夷山市九年級上學(xué)期期末考試數(shù)學(xué)卷.doc 題型:解答題
(本題10分)如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年北京師大附中初一第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題10分)如圖4,邊長為的矩形,它的周長為14,面積為10,求下列各式的值:(1) (2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com