【題目】解答題
(1)如圖1,在正方形ABCD中,點O是對角線AC的中點,點E是邊BC上一點,連接OE,過點O作OE的垂線交AB于點F.求證:OE=OF.
(2)若將(1)中,“正方形ABCD”改為“矩形ABCD”,其他條件不變,如圖2,連接EF. 。┣笞C:∠OEF=∠BAC.
ⅱ)試探究線段AF,EF,CE之間數(shù)量上滿足的關(guān)系,并說明理由.
【答案】
(1)證明:(1)連接OB,
∵在正方形ABCD中,O是AC的中點,
∴OB=OA,∠OAB=∠OBA=∠OBC=45°,
∴∠AOB=90°,
又∵OE⊥OF,
∴∠AOF=∠BOE,
在△AOF和△BOE中, ,
∴△AOF≌△BOE,
∴OE=OF;
(2)①∵∠EOF=∠FBE=90°,
∴O,E,F(xiàn),B四點共圓,
∴∠OBA=∠OEF,
∵在矩形ABCD中,O是AC的中點,
∴OA=OB,∠OAB=∠OBA,
∴∠OEF=∠BAC;
②如圖,連接BD,延長EO交AD于G,
∵BD與AC交于O,
則△OGD≌△DEB,
∴OG=OE,
∴AG=CE,
∵OF⊥GE,
∴FG=EF,
在Rt△AGF中,GF2=AG2+AF2,即EF2=CE2+AF2.
【解析】(1)連接OB,更好正方形的性質(zhì)得到OB=OA,∠OAB=∠OBA=∠OBC=45°,得到∠AOB=90°,根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論;(2)①根據(jù)已知條件得到O,E,F(xiàn),B四點共圓,由圓周角定理得到∠OBA=∠OEF,根據(jù)矩形的性質(zhì)即可得到結(jié)論;②如圖,連接BD,延長EO交AD于G于是到OG=OE,根據(jù)線段的垂直平分線的性質(zhì)得到FG=EF,根據(jù)勾股定理即可得到結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)和正方形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握矩形的四個角都是直角,矩形的對角線相等;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玉米種子的價格為a元/千克,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折.下表是購買量x(千克)、付款金額y(元)部分對應(yīng)的值,請你結(jié)合表格:
購買量x(千克) | 1.5 | 2 | 2.5 | 3 |
付款金額y(元) | 7.5 | 10 | 12 | b |
(1)寫出a、b的值,a= b= ;
(2)求出當x>2時,y關(guān)于x的函數(shù)關(guān)系式;
(3)甲農(nóng)戶將18.8元錢全部用于購買該玉米種子,計算他的購買量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y= 的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點C的坐標;
(3)結(jié)合圖象直接寫出不等式0<x+m≤ 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義新運算:a*b=a(b﹣1),若a、b是關(guān)于一元二次方程x2﹣x+ m=0的兩實數(shù)根,則b*b﹣a*a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點P是AC邊上的一點,過點P作與BC平行的直線PQ,交AB于點Q,點D在線段 BC上,聯(lián)接AD交線段PQ于點E,且 = ,點G在BC延長線上,∠ACG的平分線交直線PQ于點F.
(1)求證:PC=PE;
(2)當P是邊AC的中點時,求證:四邊形AECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上海首條中運量公交線路71路已正式開通.該線路西起滬青平公路申昆路,東至延安東路中山東一路,全長17.5千米.71路車行駛于專設(shè)的公交車道,又配以專用的公交信號燈.經(jīng)測試,早晚高峰時段71路車在專用車道內(nèi)行駛的平均速度比在非專用車道每小時快6千米,因此單程可節(jié)省時間22.5分鐘.求早晚高峰時段71路車在專用車道內(nèi)行駛的平均車速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時BC=BD-CD=8-2=6,
則BC的長為6或10.
【題型】填空題
【結(jié)束】
12
【題目】在平面直角坐標系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com