分別畫出一個用正方形、正三角形、正六邊形密鋪的圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、在圖1-5中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當(dāng)2b<a時,如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究:
(1)正方形FGCH的面積是
a2+b2
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時,此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移;當(dāng)b>a時,如圖5的圖形能否剪拼成一個正方形?若能,請你在圖中畫出剪拼的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖所示,由5個大小完全相同的小正方形擺成如圖形狀,現(xiàn)移動其中的一個小正方形,請在圖2、圖3、圖4中分別畫出滿足以下要求的圖形.(用陰影表示)
(1)使所得圖形成為軸對稱圖形,而不是中心對稱圖形;
(2)使所得圖形成為中心對稱圖形,而不是軸對稱圖形;
(3)使所得圖形既是軸對稱圖形,又是中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉安模擬)如圖,是由一個正方形和等腰直角三角形組成的圖形.試分別在圖1和圖2中,用無刻度的直尺通過連線的方式在圖1中畫出一個小正方形;在圖2中畫出圖形的對稱軸,并在指定的位置表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某鎮(zhèn)正在建造的文化廣場工地上,有兩種鋪設(shè)廣場地面的材料,一種是長為a cm,

寬為b cm的矩形板材(如圖1),另一種是邊長為c cm的正方形地磚(如圖2)

⑴用幾塊如圖2所示的正方形地磚能拼出一個新的正方形?畫出草圖,并寫出新正方形的面積

(寫出一個符合條件的答案即可);

⑵用如圖1所示的四塊矩形板材鋪成如圖3的大正方形或如圖4的大矩形,

中間分別空出一個小正方形和小矩形(即圖中陰影部分);

①請用含a、b的代數(shù)式分別表示圖3和圖4中陰影部分的面積;

②試比較圖3和圖4中陰影部分的面積哪個大?大多少?

查看答案和解析>>

同步練習(xí)冊答案