【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(5,0),直線(xiàn)y=kx-2k+3(k≠0)與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為____

【答案】4

【解析】

易知直線(xiàn)y=kx-3k+4過(guò)定點(diǎn)D(3,4),運(yùn)用勾股定理可求出OD,由條件可求出半徑OB,由于過(guò)圓內(nèi)定點(diǎn)D的所有弦中,與OD垂直的弦最短,因此只需運(yùn)用垂徑定理及勾股定理就可解決問(wèn)題.

對(duì)于直線(xiàn)y=kx-3k+4=k(x-3)+4,當(dāng)x=3時(shí),y=4,

故直線(xiàn)y=kx-3k+4恒經(jīng)過(guò)點(diǎn)(3,4),記為點(diǎn)D.

過(guò)點(diǎn)DDHx軸于點(diǎn)H,

則有OH=3,DH=4,OD==5.

∵點(diǎn)A(13,0),

OA=13,

OB=OA=13.

由于過(guò)圓內(nèi)定點(diǎn)D的所有弦中,與OD垂直的弦最短,如圖所示,

因此運(yùn)用垂徑定理及勾股定理可得:

BC的最小值為2BD=2=2×=2×12=24.

故答案為:24.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)ykxb的圖像與x軸和y軸的正半軸分別交于A,B兩點(diǎn).已知OAOB6O為坐標(biāo)原點(diǎn)),且4,則這個(gè)一次函數(shù)的解析式為 (  )

A.y=-x2B.y=-2x4

C.yx2D.y=-x2y=-2x4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象對(duì)稱(chēng)軸為,圖象交x軸于A,B,交y軸于,且,直線(xiàn)與二次函數(shù)圖象交于M,N的右邊,交y軸于P.

求二次函數(shù)圖象的解析式;

,且的面積為3,求k的值;

,直線(xiàn)ANy軸于Q,求的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.小明將一張直角梯形紙片沿虛線(xiàn)剪開(kāi),得到矩形和三角形兩張紙片,測(cè)得,.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問(wèn)題,請(qǐng)你幫助解決.

(1)將的頂點(diǎn)移到矩形的頂點(diǎn)處,再將三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)使點(diǎn)落在邊上,此時(shí),恰好經(jīng)過(guò)點(diǎn)(如圖),請(qǐng)你求出的長(zhǎng)度;

(2)在(1)的條件下,小明先將三角形的邊和矩形邊重合,然后將沿直線(xiàn)向右平移,至點(diǎn)與重合時(shí)停止.在平移過(guò)程中,設(shè)點(diǎn)平移的距離為,兩紙片重疊部分面積為,求在平移的整個(gè)過(guò)程中,的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為時(shí),平移距離的值(如圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E在邊AD(不與A,D重合),點(diǎn)F在邊CD上,且∠EBF=45°,若△ABE的外接圓⊙OCD邊相切.

(1)⊙O的半徑長(zhǎng);

(2)△BEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中錯(cuò)誤的是【 】

A.某種彩票的中獎(jiǎng)率為1%,買(mǎi)100張彩票一定有1張中獎(jiǎng)

B.從裝有10個(gè)紅球的袋子中,摸出1個(gè)白球是不可能事件

C.為了解一批日光燈的使用壽命,可采用抽樣調(diào)查的方式

D.?dāng)S一枚普通的正六面體骰子,出現(xiàn)向上一面點(diǎn)數(shù)是2的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一面墻上有一個(gè)矩形的門(mén)洞,現(xiàn)要將它改為一個(gè)圓弧形的門(mén)洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.

(1)求此圓形門(mén)洞的半徑;

(2)求要打掉墻體的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCD中,AB=2,BC=3,過(guò)對(duì)角線(xiàn)AC中點(diǎn)O的直線(xiàn)分別交邊BCAD于點(diǎn)E、F

1)求證:四邊形AECF是平行四邊形;

2)如圖2,當(dāng)EFAC時(shí),求EF的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案