【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)都在軸上,點(diǎn)都在直線上,,且,分別是以為直角頂點(diǎn)的等腰直角三角形,則的面積是_______

【答案】

【解析】

根據(jù)OA1=1,可得點(diǎn)A1的坐標(biāo)為(1,0),然后根據(jù)△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的長(zhǎng)度,然后找出規(guī)律,求出的面積即可.

OA1=1,

∴點(diǎn)A1的坐標(biāo)為(10),

∵△B1A1A2是等腰直角三角形,

A1B1= A1A2 =OA1=1

B11,1),B1A2= ,

∵△B2B1A2為等腰直角三角形,

A2A3=2,B22,2),

同理可得,B322,22),B42323),…B1029,29),

.

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx-3A(-1,0)、B(3,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為2,點(diǎn)P(m,n)是線段AD上的動(dòng)點(diǎn).

(1)求直線AD及拋物線的解析式.

(2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)H,求線段PH的長(zhǎng)度lm的關(guān)系式,m為何值時(shí),PH最長(zhǎng)?

(3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))E,使得P、H、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)D在AB的延長(zhǎng)線上,且BD=6,過點(diǎn)D作DE⊥AD交AC的延長(zhǎng)線于點(diǎn)E,以DE為直徑的⊙O交AE于點(diǎn)F.

(1)求⊙O的半徑;

(2)設(shè)CD交⊙O于點(diǎn)Q,①試說明Q為CD的中點(diǎn);②求BQ·BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是兩個(gè)全等的直角三角形,量得它們的斜邊長(zhǎng)為,較小銳角為,將這兩個(gè)三角形擺成如圖(1)所示的形狀,使點(diǎn)、、在同一條直線上,且點(diǎn)與點(diǎn)重合,將圖(1)中的繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)到圖(2)的位置,點(diǎn)在邊上,于點(diǎn),則線段的長(zhǎng)為______.(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD紙片上有一點(diǎn)P,PA1,PD2,PC3,現(xiàn)將△PCD剪下,并將它拼到如圖所示位置(CA重合,PG重合,DD重合),則∠APD的度數(shù)為( 。

A.150°B.135°C.120°D.108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里裝有3個(gè)黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計(jì)其中白球數(shù),采用如下辦法:隨機(jī)從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,記下顏色,不斷重復(fù)上述過程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計(jì)口袋中白球大約有( )

A. 10個(gè) B. 12 個(gè) C. 15 個(gè) D. 18個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里有分別標(biāo)注2、4、6的3個(gè)小球(小球除數(shù)字不同外,其余都相同),另有3張背面完全一樣、正面分別寫有數(shù)字6、7、8的卡片.現(xiàn)從口袋中任意摸出一個(gè)小球,再?gòu)倪@3張背面朝上的卡片中任意摸出一張卡片.

(1)請(qǐng)你用列表或畫樹狀圖的方法,表示出所有可能出現(xiàn)的結(jié)果;

(2)小紅和小莉做游戲,制定了兩個(gè)游戲規(guī)則:

規(guī)則1:若兩次摸出的數(shù)字,至少有一次是“6”,小紅贏;否則,小莉贏.

規(guī)則2:若摸出的卡片上的數(shù)字是球上數(shù)字的整數(shù)倍時(shí),小紅贏;否則,小莉贏.

小紅要想在游戲中獲勝,她會(huì)選擇哪一種規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2,⊙Ol1l2分別相切于點(diǎn)A和點(diǎn)B,點(diǎn)M和點(diǎn)N分別是l1l2上的動(dòng)點(diǎn),MN沿l1l2平移,若⊙O的半徑為1,∠1=60°,下列結(jié)論錯(cuò)誤的是(  )

A. MN= B. MNO相切,則AM=

C. l1l2的距離為2 D. ∠MON=90°,則MN⊙O相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線y=ax-2+M交于A,BC,D四點(diǎn),點(diǎn)A,Bx軸上,點(diǎn)C坐標(biāo)為(0,-2).

(1)求a值及A,B兩點(diǎn)坐標(biāo);

(2)點(diǎn)Pm,n)是拋物線上的動(dòng)點(diǎn),當(dāng)CPD為銳角時(shí),請(qǐng)求出m的取值范圍;

(3)點(diǎn)E是拋物線的頂點(diǎn),M沿CD所在直線平移,點(diǎn)CD的對(duì)應(yīng)點(diǎn)分別為點(diǎn)C′,D,順次連接A,C′,D′,E四點(diǎn),四邊形ACDE(只要考慮凸四邊形)的周長(zhǎng)是否存在最小值?若存在,請(qǐng)求出此時(shí)圓心M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案