如圖:在平面直角坐標(biāo)系中A( - 1, 5 ), B( - 1, 0 ) C( - 4, 3 ).

(1)在圖中作出△ABC關(guān)于y軸對稱圖形△A1B1C1, 直接在圖中寫出C1的坐標(biāo)(2分)

(2)在x軸上找一點(diǎn)P, 使得PA+PC1的值最小,并求出P點(diǎn)坐標(biāo)。(5分)

 

【答案】

(1)

(2)P的坐標(biāo)為(,0)

【解析】

試題分析:(1)利用軸對稱性質(zhì),作出A、B、C關(guān)于y軸的對稱點(diǎn),A1、B1、C1,順次連接A1B1、B1C1、C1A1,即得到關(guān)于y軸對稱的△A1B1C1;如圖

(2)作點(diǎn)C1關(guān)于x軸的對稱點(diǎn)D(4,-3),

連接AD交x軸于P點(diǎn),此時PA+PC1

值最小,設(shè)直線AD的關(guān)系式為y=kx+b,

   解得

所以直線AD的關(guān)系式為

當(dāng)y = 0時, 解得 ,所以P的坐標(biāo)為(,0)

考點(diǎn):軸對稱圖形、直線

點(diǎn)評:本題考查軸對稱圖形、直線,解答本題時要求考生掌握軸對稱圖形的概念,會做一個圖形的軸對稱圖形、會求兩直線的交點(diǎn)坐標(biāo)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案