如圖,在□ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
(1)證明見(jiàn)解析;(2)6.

試題分析:(1)利用對(duì)應(yīng)兩角相等,證明兩個(gè)三角形相似△ADF∽△DEC;
(2)利用△ADF∽△DEC,可以求出線段DE的長(zhǎng)度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長(zhǎng)度.
(1)證明:∵?ABCD,∴AB∥CD,AD∥BC,
∴∠C+∠B=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C.
在△ADF與△DEC中,

∴△ADF∽△DEC.
(2)∵△ADF∽△DEC,
  
又 ∵ CD=AB=8,AD=6,AF= 4.
代入求得DE="12" ,
四邊形ABCD是平行四邊形,又∵AE⊥BC,∴ AE⊥AD,
在Rt△AED中,由勾股定理可得AE=6. 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)學(xué)課上,同學(xué)們研究圖形的拼接問(wèn)題.
比如:兩個(gè)全等的等腰直角三角形紙片既能拼成一個(gè)大的等腰直角三角形(如圖1),也能拼成一個(gè)正方形(如圖2).

(1)現(xiàn)有兩個(gè)相似的直角三角形紙片,各有一個(gè)角為,恰好可以拼成另一個(gè)含有30°角的直角三角形,那么在原來(lái)的兩個(gè)三角形紙片中,較大的與較小的紙片的相似比為_(kāi)_______,請(qǐng)畫(huà)出拼接的示意圖;
(2)現(xiàn)有一個(gè)矩形恰好由三個(gè)各有一個(gè)角為的直角三角形紙片拼成,請(qǐng)你畫(huà)出兩種不同拼法的示意圖.在拼成這個(gè)矩形的三角形中,若每種拼法中最小的三角形的斜邊長(zhǎng)為,請(qǐng)直接寫出每種拼法中最大三角形的斜邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

右面圖形中,形狀相同的圖形有(  )
A.1組B.2組C.3組D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在邊長(zhǎng)為9的正方形ABCD中, F為AB上一點(diǎn),連接CF.過(guò)點(diǎn)F作FE⊥CF,交AD于點(diǎn)E,若AF=3,則AE等于(   ) 
A.1B.1.5C.2D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC 中,∠C=90°,BC=6,D,E 分別在 AB、AC上,將△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A′處,若A′為CE的中點(diǎn),則折痕DE的長(zhǎng)為(  )

A、      B、2        C、3       D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知E、F是平行四邊形ABCD對(duì)角線BD的三等分點(diǎn),且CG=3,則AD等于     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=10,AD=4,點(diǎn)P是邊AB上一點(diǎn),若△APD與△BPC相似,則滿足條件的點(diǎn)P有   個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示的兩個(gè)三角形是位似圖形,它們的位似中心是
A.點(diǎn)OB.點(diǎn)PC.點(diǎn)MD.點(diǎn)N

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是小明設(shè)計(jì)用手電來(lái)測(cè)量某古城墻高度的示意圖,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測(cè)得AB=1.2米,BP=1.8米,PD=12米, 那么該古城墻的高度是(   )
A.6米B.8米C.18米D.24米

查看答案和解析>>

同步練習(xí)冊(cè)答案