【題目】如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:≌;
(2)當(dāng)時(shí),求四邊形AECF的面積.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據(jù)全等三角形的判定推出即可;
(2)求出△ABE是等邊三角形,求出高AH的長(zhǎng),再求出面積即可.
(1)證明:∵四邊形ABCD是平行四邊形,
∴,,,
∵點(diǎn)E、F分別是BC、AD的中點(diǎn),
∴,,
∴,
在和中
,
∴≌();
(2)作于H,
∵四邊形ABCD是平行四邊形,
∴,,
∵點(diǎn)E、F分別是BC、AD的中點(diǎn),,
∴,,
∴,,
∴四邊形AECF是平行四邊形,
∵,
∴四邊形AECF是菱形,
∴,
∵,
∴,
即是等邊三角形,
,
由勾股定理得:,
∴四邊形AECF的面積是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在中,C、D分別為BM、AM上的點(diǎn),四邊形ABCD內(nèi)接于,連接AC,;
如圖,求證:弧弧BD;
如圖,若AB為直徑,,求值;
如圖,在的條件下,E為弧CD上一點(diǎn)不與C、D重合,F為AB上一點(diǎn),連接EF交AC于點(diǎn)N,連接DN、DE,若,,,求AN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,DC//AB,∠A=90°,AD=6cm,DC=4cm,BC的坡度i=3:4,動(dòng)點(diǎn)P從A出發(fā)以2cm/s的速度沿AB方向向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以3厘cm/s的速度沿B→C→D方向向點(diǎn)D運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求邊BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),PC與BQ相互平分;
(3)連結(jié)PQ,設(shè)△PBQ的面積為y,探求y與t的函數(shù)關(guān)系式,求t為何值時(shí),y有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中拋物線與x軸的正半軸交于點(diǎn),交y于點(diǎn)C,頂點(diǎn),直線AB與y軸交于點(diǎn)D.
求拋物線的表達(dá)式;
聯(lián)結(jié)BC,如果點(diǎn)P在x軸上,且與相似,求出點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的邊,,點(diǎn)從點(diǎn)出發(fā),沿射線移動(dòng),以為直徑作圓,點(diǎn)為圓與射線的公共點(diǎn),連接,過(guò)點(diǎn)作,與圓相交于點(diǎn), 連接.
(1)試說(shuō)明四邊形是矩形;
(2)當(dāng)圓與射線相切時(shí),點(diǎn)停止移動(dòng),在點(diǎn)移動(dòng)的過(guò)程中:
①矩形的面積是否存在最大值或最小值?若存在,求出這個(gè)最大值或最小值;若不存在,說(shuō)明理由;
②求點(diǎn)移動(dòng)路線的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓錐的底面半徑為10 cm,高為10cm.
(1)求圓錐的全面積;
(2)若一只螞蟻從底面上一點(diǎn)A出發(fā)繞圓錐側(cè)面一周回到SA上的點(diǎn)M處,且SM=3AM,求它所走的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,AD∥BC,BC=3,邊AD在x軸上,點(diǎn)C在y軸上,點(diǎn)D坐標(biāo)為(2,0),直線l:y=-2x-10經(jīng)過(guò)點(diǎn)A、B.
(1)求四邊形ABCD的面積;
(2)將直線l向右平移,平移后的直線與x軸交于點(diǎn)P,與直線BC交于點(diǎn)Q,設(shè)AP=t.直線l在平移過(guò)程中,是否存在t的值,使△PDQ為等腰三角形?若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由;
(3)將直線l繞點(diǎn)A旋轉(zhuǎn),當(dāng)直線l將四邊形ABCD的面積分為1:3兩部分時(shí),請(qǐng)直接寫(xiě)出l與BC的交點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、P,點(diǎn)A(6,),點(diǎn)P的橫坐標(biāo)是2.拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)坐標(biāo)原點(diǎn),且與x軸交于點(diǎn)B,頂點(diǎn)為P.
求:(1)反比例函數(shù)的解析式;
(2)拋物線的表達(dá)式及B點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E是BC上的一點(diǎn),連接AE,過(guò)B點(diǎn)作BH⊥AE,垂足為點(diǎn)H,延長(zhǎng)BH交CD于點(diǎn)F,連接AF.
(1)求證AE=BF;
(2)若正方形的邊長(zhǎng)是5,BE=2,求AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com