當(dāng)m=2,n=時(shí),求代數(shù)式(2m-3n)(m+n)+的值.

 

【答案】

【解析】

試題分析:直接把m=2,n=代入代數(shù)式(2m-3n)(m+n)+,即可得到結(jié)果.

當(dāng)m=2,n=時(shí),

(2m-3n)(m+n)+

考點(diǎn):本題考查的是代數(shù)式求值

點(diǎn)評(píng):解答本題的關(guān)鍵是注意字母對(duì)應(yīng)的數(shù),同時(shí)熟練掌握有理數(shù)的混合運(yùn)算的順序.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB為等邊三角形,點(diǎn)A的坐標(biāo)是(4
3
,0),點(diǎn)B在第一象限,AC是∠OAB的平分線,并且與y軸交于點(diǎn)E,點(diǎn)M為直線AC上一個(gè)動(dòng)點(diǎn),把△AOM繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使邊AO與邊A精英家教網(wǎng)B重合,得到△ABD.
(1)求直線OB的解析式;
(2)當(dāng)M與點(diǎn)E重合時(shí),求此時(shí)點(diǎn)D的坐標(biāo);
(3)是否存在點(diǎn)M,使△OMD的面積等于3
3
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,∠C=90°,AB=6,AC=3,動(dòng)點(diǎn)P在AB上運(yùn)動(dòng),精英家教網(wǎng)以點(diǎn)P為圓心,PA為半徑畫⊙P交AC于點(diǎn)Q.
(1)比較AP,AQ的大小,并證明你的結(jié)論;
(2)當(dāng)⊙P與BC相切時(shí),求AP的長(zhǎng),并求此時(shí)弓形(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)一條船上午8點(diǎn)在A處望見(jiàn)西南方向有一座燈塔B,此時(shí)測(cè)得船和燈塔相距36
2
海里,船以每小時(shí)20海里的速度向南偏西24°的方向航行到C處,此時(shí)望見(jiàn)燈塔在船的正北方向.(參考數(shù)據(jù)sin24°≈0.4,cos24°≈0.9)
(1)求幾點(diǎn)鐘船到達(dá)C處;
(2)當(dāng)船到達(dá)C處時(shí),求船和燈塔的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•汕頭)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4
3
.將這副直角三角板按如圖1所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng).
(1)如圖2,當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D到點(diǎn)A重合時(shí),設(shè)EF與BC交于點(diǎn)M,則∠EMC=
15
15
度;
(2)如圖3,當(dāng)三角板DEF運(yùn)動(dòng)過(guò)程中,當(dāng)EF經(jīng)過(guò)點(diǎn)C時(shí),求FC的長(zhǎng);
(3)在三角板DEF運(yùn)動(dòng)過(guò)程中,設(shè)BF=x,兩塊三角板重疊部分的面積為y,求y與x的函數(shù)解析式,并求出對(duì)應(yīng)的x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD中,AB=5,AD=3,E是CD上一點(diǎn)(不與C,D重合),連接AE,過(guò)點(diǎn)B作BF⊥AE,精英家教網(wǎng)垂足為F.
(1)若DE=2,求
BFAB
的值;
(2)設(shè)AE=x,BF=y.
①求y關(guān)于x的函數(shù)解析式,寫出自變量x的取值范圍;
②問(wèn)當(dāng)點(diǎn)E從D運(yùn)動(dòng)到C,BF的值是增大還是減。空f(shuō)明理由.
③當(dāng)△AEB為等腰三角形時(shí),求BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案