【題目】已知二次函數(shù)fx)=ax2+bx+c和一次函數(shù)gx)=﹣bx,其中ab、c,滿足abca+b+c0

1)求證:這兩個函數(shù)的圖象交于不同的兩點;

2)設(shè)這兩個函數(shù)的圖象交于A,B兩點,作AA1x軸于A1,BB1x軸于B1,求線段A1B1的長的取值范圍.

【答案】1)見解析;(2A1B12

【解析】

1)把兩個函數(shù)聯(lián)立成方程組,轉(zhuǎn)化為解一元二次方程,用根的判別式求解即可;

2A1B12=(x1x22=(x1+x224x1x2,用根與系數(shù)的關(guān)系轉(zhuǎn)化為含a、bc的式子,再配方求解.

1)證明:聯(lián)立方程得:ax2+2bx+c0,

△=4b2-ac),

abc,a+b+c0

a0,c0,

ac0,

∴△>0,

∴兩函數(shù)的圖象相交于不同的兩點;

2)解:設(shè)方程ax2+2bx+c0的兩根為x1,x2,則

A1B12=(x1x22=(x1+x224x1x2,

=(﹣2,

4[2++1],

4[2+],

abc,a+b+c0,

b=﹣(a+c,

a>﹣(a+c)>ca0,

∴﹣2<﹣

此時3A1B1212,

A1B12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種商品,經(jīng)市場調(diào)査發(fā)現(xiàn),該商品的周銷售量y(件)是售價x(元/件)的一次函數(shù).其售價、周銷售量、周銷售利潤w(元)的三組對應(yīng)值如表:

售價x(元/件)

50

60

80

周銷售量y(件)

100

80

40

周銷售利潤w(元)

1000

1600

1600

注:周銷售利潤=周銷售量×(售價﹣進價)

1)求y關(guān)于x的函數(shù)解析式_____

2)當(dāng)售價是_____/件時,周銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:

成績分組

頻數(shù)

頻率

50≤x<60

8

0.16

60≤x<70

12

a

70≤x<80

0.5

80≤x<90

3

0.06

90≤x≤100

b

c

合計

1

(1)寫出a,b,c的值;

(2)請估計這1000名學(xué)生中有多少人的競賽成績不低于70分;

(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A1,A2,A3是拋物線yx2+1x0)上的三點,且A1,A2A3三點的橫坐標(biāo)為連續(xù)的整數(shù),連接A1A3,過A2A2Qx軸于點Q,交A1A3于點P,則線段PA2的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=4cm,BC=8cm.動點P在邊BC上從點BC運動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線CDA運動,速度為2cm/s.當(dāng)一個點到達終點時,另一個點隨之停止運動。設(shè)點P運動的時間為t(s),BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數(shù)關(guān)系的圖象大致是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖①,P是⊙O外的一點,直線PO分別交⊙O于點AB,可以發(fā)現(xiàn)PA是點P到⊙O上的點的最短距離.

1)直接運用:如圖②,在RtABC中,∠ACB90°ACBC2,以BC為直徑的半圓交ABD,P是弧CD上的一個動點,連接AP,則AP的最小值是   

2)構(gòu)造運用:如圖③,在邊長為8的菱形ABCD中,∠A60°,MAD邊的中點,NAB邊上一動點,將AMN沿MN所在的直線翻折得到AMN,連接AC,請求出AC長度的最小值.

3)綜合運用:如圖④,平面直角坐標(biāo)系中,分別以點A(﹣2,3),B3,4)為圓心,分別以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動點,Px軸上的動點,則PM+PN的最小值等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)低碳生活,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔ACCD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2

1 2

(1)求車座點E到地面的距離;(結(jié)果精確到1cm)

(2)求車把點D到車架檔直線AB的距離.(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點,點Ax軸上,點B的橫坐標(biāo)為-8.

1)求該拋物線的解析式;

2)點P是直線AB上方的拋物線上一動點(不與點AB重合),過點Px軸的垂線,垂足為C,交直線AB于點D,作PEAB于點E.

①設(shè)PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;

②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點FG恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案