【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,
D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD
(2)若AD=6,BD=8,求DE的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD,若△ADC的周長為8,AB=6,則△ABC的周長為( 。
A. 20 B. 22 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,O是坐標(biāo)原點(diǎn),拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn),AB⊥y軸于點(diǎn)A,AB=2,AO=4,OC=5,點(diǎn)D是線段AO上一動(dòng)點(diǎn),連接CD、BD.
(1)求出拋物線的解析式;
(2)如圖2,拋物線的對稱軸分別交BD、CD于點(diǎn)E、F,當(dāng)△DEF為等腰三角形時(shí),求出點(diǎn)D的坐標(biāo);
(3)當(dāng)∠BDC的度數(shù)最大時(shí),請直接寫出OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,4).
(1)求此拋物線的解析式;
(2)設(shè)點(diǎn)P(2,n)在此拋物線上,AP交y軸于點(diǎn)E,連接BE,BP,請判斷△BEP的形狀,并說明理由;
(3)設(shè)拋物線的對稱軸交x軸于點(diǎn)D,在線段BC上是否存在點(diǎn)Q,使得△DBQ成為等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題12分)某乒乓球館使用發(fā)球機(jī)進(jìn)行輔助訓(xùn)練,出球口在桌面中線端點(diǎn)A處的正上方,假設(shè)每次發(fā)出的乒乓球的運(yùn)動(dòng)路線固定不變,且落在中線上,在乒乓球運(yùn)行時(shí),設(shè)乒乓球與端點(diǎn)A的水平距離為(米),與桌面的高度為(米),運(yùn)行時(shí)間為(秒),經(jīng)多次測試后,得到如下部分?jǐn)?shù)據(jù):
(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0. 8 | … |
(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(1)當(dāng)為何值時(shí),乒乓球達(dá)到最大高度?
(2)乒乓球落在桌面時(shí),與端點(diǎn)A的水平距離是多少?
(3)乒乓球落在桌面上彈起后,與滿足
①用含的代數(shù)式表示;
②球網(wǎng)高度為0.14米,球桌長(1.4×2)米,若球彈起后,恰好有唯一的擊球點(diǎn),可以將球沿直線扣殺到點(diǎn)A,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過程中,點(diǎn)到點(diǎn)的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交x、y軸于點(diǎn)A,B,與一次函數(shù)y=kx的圖像交于第一象限內(nèi)的點(diǎn)C.
(1)當(dāng)∠時(shí),求點(diǎn)C的坐標(biāo)。
(2)當(dāng)時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y=2x+4 與 x 軸相交于點(diǎn) A,與 y 軸相交于點(diǎn) B.
(1)求 A,B 兩點(diǎn)的坐標(biāo);
(2)過 B 點(diǎn)作直線 BP 與 x 軸相交于 P,且使 OP=2OA,求直線 BP 的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點(diǎn)坐標(biāo).
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)△PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時(shí)x的取值范圍;
②直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com