【題目】已知:在和中,,,將如圖擺放,使得的兩條邊分別經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)當(dāng)將如圖1擺放時(shí),則_________度.
(2)當(dāng)將如圖2擺放時(shí),請(qǐng)求出的度數(shù),并說(shuō)明理由.
(3)能否將擺放到某個(gè)位置時(shí),使得、同時(shí)平分和?直接寫(xiě)出結(jié)論_______(填“能”或“不能”)
【答案】(1)240;(2)理由見(jiàn)解析;(3)不能
【解析】
(1)要求∠ABD+∠ACD的度數(shù),只要求出∠ABC+∠CBD+∠ACB+∠BCD,利用三角形內(nèi)角和定理得出∠ABC+∠ACB=180°-∠A=180°-40°=140°;根據(jù)三角形內(nèi)角和定理,∠CBD+∠BCD=∠E+∠F=100°,得出∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°;
(2)要求∠ABD+∠ACD的度數(shù),只要求出∠ABC+∠ACB-(∠BCD+∠CBD)的度數(shù).根據(jù)三角形內(nèi)角和定理,∠CBD+∠BCD=∠E+∠F=100°;根據(jù)三角形內(nèi)角和定理得,∠ABC+∠ACB=180°-∠A=140°,得出∠ABD+∠ACD=∠ABC+∠ACB-(∠BCD+∠CBD)=140°-100°=40°;
(3)不能.假設(shè)能將△DEF擺放到某個(gè)位置時(shí),使得BD、CD同時(shí)平分∠ABC和∠ACB.則∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,與三角形內(nèi)角和定理矛盾,所以不能.
(1)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°
∴∠ABC+∠ACB=180°∠A=180°40°=140°
在△BCD中,∠D+∠BCD+∠CBD=180°
∴∠BCD+∠CBD=180°∠D
在△DEF中,∠D+∠E+∠F=180°
∴∠E+∠F=180°∠D
∴∠CBD+∠BCD=∠E+∠F=100°
∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°.
(2)∠ABD+∠ACD=40°;
理由如下:
∵∠E+∠F=100°
∴∠D=180°(∠E+∠F)=80°
∴∠ABD+∠ACD=180°∠A∠DBC∠DCB=180°40°(180°80°)=40°;
(3)不能.假設(shè)能將△DEF擺放到某個(gè)位置時(shí),使得BD、CD同時(shí)平分∠ABC和∠ACB.則∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,與三角形內(nèi)角和定理矛盾,所以不能.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)l1 :y=-3x+3與x軸交于點(diǎn)D,直線(xiàn)l2經(jīng)過(guò)A(4,0)、B(3,)兩點(diǎn),直線(xiàn)l1 與直線(xiàn)l2交于點(diǎn)C.
(1)求直線(xiàn)l2的解析式和點(diǎn)C的坐標(biāo);
(2)在 y軸上是否存在一點(diǎn)P,使得四邊形PDBC的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).
(1)求△AHO的周長(zhǎng);
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
【答案】(1)△AHO的周長(zhǎng)為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.
【解析】試題分析: (1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.
試題解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12;
(2)將A點(diǎn)坐標(biāo)代入y=(k≠0),得
k=-4×3=-12,
反比例函數(shù)的解析式為y=;
當(dāng)y=-2時(shí),-2=,解得x=6,即B(6,-2).
將A、B點(diǎn)坐標(biāo)代入y=ax+b,得
,
解得,
一次函數(shù)的解析式為y=-x+1.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.
【題型】解答題
【結(jié)束】
21
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過(guò)點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線(xiàn)于點(diǎn)E,直線(xiàn)AB與CE相交于點(diǎn)F.
(1)求證:CF為⊙O的切線(xiàn);
(2)填空:當(dāng)∠CAB的度數(shù)為________時(shí),四邊形ACFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則B2的坐標(biāo)為_____;點(diǎn)B2016的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作發(fā)現(xiàn):
如圖,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長(zhǎng)AF交CD于點(diǎn)G.猜想線(xiàn)段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.
(2)類(lèi)比探究:
如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,O是對(duì)角線(xiàn)AC的中點(diǎn),過(guò)O作AC的垂線(xiàn)與邊AD、BC分別交于E、F。
(1)求證:四邊形AFCE是菱形;
(2)若AF⊥BC,試猜想四邊形AFCE是什么特殊四邊形,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知BE平分∠ABC,E點(diǎn)在線(xiàn)段AD上,∠ABE=∠AEB,AD與BC平行嗎?為什么?
解:因?yàn)?/span>BE平分∠ABC(已知)
所以∠ABE=∠EBC ( )
因?yàn)椤?/span>ABE=∠AEB( )
所以∠ =∠ ( )
所以AD∥BC ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線(xiàn)段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).
(1)將線(xiàn)段平移得到線(xiàn)段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).
①點(diǎn)平移到點(diǎn)的過(guò)程可以是:先向 平移 個(gè)單位長(zhǎng)度,再向 平移 個(gè)單位長(zhǎng)度;
②點(diǎn)的坐標(biāo)為 .
(2)在(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫(huà)出圖形并求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com