【題目】尺規(guī)作圖及探究:
已知:線段AB=a.
(1)完成尺規(guī)作圖:
點P在線段AB所在直線上方,PA=PB,且點P到AB的距離等于,連接PA,PB,在線段AB上找到一點Q使得QB=PB,連接PQ,并直接回答∠PQB的度數(shù);
(2)若將(1)中的條件“點P到AB的距離等于”替換為“PB取得最大值”,其余所有條件都不變,此時點P的位置記為,點Q的位置記為,連接,并直接回答∠的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四點,∠APC=∠CPB=60°,過點C作CM∥BP交PA的延長線于點M.
(1)求證:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在鈍角三角形中,,,動點從點出發(fā)到點止,動點從點出發(fā)到點止,點運動的速度為,點運動的速度為,如果兩點同時開始運動,那么,
若AD=AE,求值.
若△ADE和△ABC相似,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的單位正方形組成的網(wǎng)格中,按要求畫出坐標(biāo)系及△A1B1C1及△A2B2C2;
(1)若點A、C的坐標(biāo)分別為(﹣3,0)、(﹣2,3),請畫出平面直角坐標(biāo)系并指出點B的坐標(biāo);
(2)畫出△ABC關(guān)于y軸對稱再向上平移1個單位后的圖形△A1B1C1;
(3)以圖中的點D為位似中心,將△A1B1C1作位似變換且把邊長放大到原來的兩倍,得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,S同學(xué)把一張6×6的正方形網(wǎng)格紙向上再向右對折兩次后按圖畫實線,剪去多余部分只留下陰影部分,然后展開攤平在一個平面內(nèi)得到了一幅剪紙圖案.T同學(xué)說:“我不用剪紙,我直接在你的圖1②基礎(chǔ)上,通過‘逆向還原’的方式依次畫出相應(yīng)的與原圖形成軸對稱的圖形也能得出最后的圖案.”畫圖過程如圖2所示.
對于圖3中的另一種剪紙方式,請仿照圖2中“逆向還原”的方式,在圖4①中的正方形網(wǎng)格中畫出還原后的圖案,并判斷它與圖2中最后得到的圖案是否相同.
答:□相同;□不相同.(在相應(yīng)的方框內(nèi)打勾)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1中的三種情況所示,對于平面內(nèi)的點M,點N,點P,如果將線段PM繞點P順時針旋轉(zhuǎn)90°能得到線段PN,就稱點N是點M關(guān)于點P的“正矩點”.
(1)在如圖2所示的平面直角坐標(biāo)系中,已知,.
①在點P,點Q中,___________是點S關(guān)于原點O的“正矩點”;
②在S,P,Q,M這四點中選擇合適的三點,使得這三點滿足:
點_________是點___________關(guān)于點___________的“正矩點”,寫出一種情況即可;
(2)在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交于點B,點A關(guān)于點B的“正矩點”記為點C,坐標(biāo)為.
①當(dāng)點A在x軸的正半軸上且OA小于3時,求點C的橫坐標(biāo)的值;
②若點C的縱坐標(biāo)滿足,直接寫出相應(yīng)的k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分線交 BC 于 F,交 AC 于 E,交 BA 的延長線于 G,若 EG=3,則 BF 的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2018年學(xué)校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達(dá)到121個,求2018至2020年寢室數(shù)量的年平均增長率;
(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com