【題目】如圖,射線OM在第一象限,且與x軸正半軸的夾角為60°,過點D(6,0)作DA⊥OM于點A,作線段 OD的垂直平分線BE交x軸于點E,交AD于點B,作射線OB.以AB為邊在△AOB的外側(cè)作正方形ABCA1,延長A1C交射線OB于點B1,以A1B1為邊在△A1OB1的外側(cè)作正方形A1B1C1A2,延長A2C1交射線OB于點B2,以A2B2為邊在△A2OB2的外側(cè)作正方形A2B2C2A3……按此規(guī)律進行下去,則正方形A2017B2017C2017A2018的周長為______________.
科目:初中數(shù)學 來源: 題型:
【題目】對于多項式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當c=9時,b= ;當b=3時,c= ;
②若多項式Bx2dxc與A有公因式,求d的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,是的中點,,分別是的三等分點,,分別交于,兩點,則等于( )
A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD的對角線AC,BD相交于點O,給出下列4個條件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC.從中任取兩個條件,能推出四邊形ABCD是平行四邊形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠BAC與∠ACD的角平分線交于點E,且AC=13,AE=5,則AB與CD之間的距離是( )
A.7B.8C.D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D、E分別是等邊三角形ABC的邊AB、AC上的點,且AE=CD,CE、BD交于點P.
(1)求證:CE=BD.
(2)求∠BPE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE平分∠BAC交BC于點E,O是AB上一點,經(jīng)過A,E兩點的⊙O交AB于點D,連接DE,作∠DEA的平分線EF交⊙O于點F,連接AF.
(1)求證:BC是⊙O的切線;
(2)若sin∠EFA=,AF=,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,四邊形BDEF是菱形,其中線段DF的長與DB相等,將菱形BDEF繞點B按順時針方向旋轉(zhuǎn),甲、乙兩位同學發(fā)現(xiàn)在此旋轉(zhuǎn)過程中,有如下結(jié)論.
甲:線段AF與線段CD的長度總相等;
乙:直線AF和直線CD所夾的銳角的度數(shù)不變.
那么,你認為( )
A. 甲、乙都對 B. 乙對甲不對 C. 甲對乙不對 D. 甲、乙都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,則BC的長度為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com