【題目】如圖,在中,,點(diǎn)分別為,的中點(diǎn),點(diǎn)在邊上,連接,過點(diǎn)的垂線交于點(diǎn),垂足為點(diǎn),且與四邊形的周長相等,設(shè),

1)求證:;

2)若,求的值.

【答案】1)見解析;(2

【解析】

1)根據(jù)中位線的性質(zhì)和定義得DF =c,CF=b,結(jié)合△CDE與四邊形ABDE的周長相等,得到CE=,可得EF的長,進(jìn)而即可得到結(jié)論;

2)連接BE,DG,過點(diǎn)AAPBGP,過BBMDGM,過EENDGN,證明四邊形BMNE是平行四邊形,易得BEDG,從而得到ABEFDG,進(jìn)而得到FG=(bc),再證∠BAP=DEF=PAC,得到△ABP≌△AGP,從而得AB=AG=c,結(jié)合CF=FG+CG,得到關(guān)于b,c的等式,即可得到結(jié)論.

1)證明:∵點(diǎn)分別為,的中點(diǎn),

的中位線,

,

∵點(diǎn)的中點(diǎn),

與四邊形的周長相等,

,

,

,

2)解:連接,,過點(diǎn),過BBMDGM,過EENDGN,如圖所示.

,

∵△BDG和△EDG的底邊為DG

∴底邊DG上的高BM=EN

BMDG,ENDG

BMEN,

∴四邊形BMNE是平行四邊形,

BEDG

的中位線,

,

∴∠BAE=DFG

BEDG,

∴∠AEB=FGD

,

,

,

,

∴∠BAE=DFG=2DEF

,

,

,

,

∴∠APB=APG=90°.

AP=AP,

∴△ABP≌△AGP,

,

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線x軸相交于A、B兩點(diǎn)(AB右),與y軸交于點(diǎn)C.其頂點(diǎn)為D

1)求點(diǎn)D的坐標(biāo)和直線BC對(duì)應(yīng)的一次函數(shù)關(guān)系式;

2)若正方形PQMN的一邊PQ在線段AB上,另兩個(gè)頂點(diǎn)M、N分別在BC、AC上,試求M、N兩點(diǎn)的坐標(biāo);

3)如圖1E是線段BC上的動(dòng)點(diǎn),過點(diǎn)EDE的垂線交BD于點(diǎn)F,求DF的最小值.

(圖1 (圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛一起做游戲,游戲規(guī)則如下:將分別標(biāo)有數(shù)字 1, 2 3, 4 4 個(gè)小球放入一個(gè)不透明的袋子中,這些球除數(shù)字外都相同.從中隨機(jī)摸出一個(gè)球記下數(shù)字后放回,再從中隨機(jī)摸出一個(gè)球記下數(shù)字.若兩次數(shù)字差的絕對(duì)值小于 2,則小明獲勝,否則小剛獲勝.這個(gè)游戲?qū)扇斯絾??qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線y=x-1x軸、y軸于A、B點(diǎn),點(diǎn)P(1,且S四邊形PAOB=3.5,雙曲線y=經(jīng)過點(diǎn)P

(1)求k的值;

(2)如圖2,直線)交射線BAE,交雙曲線y=F,將直線向右平移4個(gè)單位長度后交射線于,交雙曲線y=,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:

分別以點(diǎn)C和點(diǎn)D為圓心,大于的同樣的長為半徑作弧,兩弧交于MN兩點(diǎn);

作直線MN,交CD于點(diǎn)E,連接BE

若直線MN恰好經(jīng)過點(diǎn)A,則下列說法錯(cuò)誤的是(  )

A.ABC60°

B.

C.AB4,則BE

D.tanCBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果,正方形ABCD的邊長為2cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q,若PQ=AE,則PD等于(

A. cm或cm B. cm C.cm或cm D.cm或cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售型和型兩種學(xué)習(xí)機(jī),其中用10000元采購型學(xué)習(xí)機(jī)臺(tái)數(shù)和用8000元采購型學(xué)習(xí)機(jī)臺(tái)數(shù)相等,且一臺(tái)型學(xué)習(xí)機(jī)比一臺(tái)型學(xué)習(xí)機(jī)進(jìn)價(jià)多100元.

1)求一臺(tái)型和型學(xué)習(xí)機(jī)價(jià)格各是多少元?

2)若購進(jìn)型學(xué)習(xí)機(jī)共100臺(tái),其中型的進(jìn)貨量不超過型的2倍,設(shè)購進(jìn)型學(xué)習(xí)機(jī)臺(tái).

①求的取值范圍.

②已知型學(xué)習(xí)機(jī)售價(jià)均是900元/臺(tái),實(shí)際進(jìn)貨時(shí),廠家對(duì)型學(xué)習(xí)機(jī)在原進(jìn)貨價(jià)的基礎(chǔ),上下調(diào)元,且限定商店最多購進(jìn)型學(xué)習(xí)機(jī)60臺(tái),若商店保持同種學(xué)習(xí)機(jī)的售價(jià)不變,請(qǐng)你根據(jù)以上信息,求出使這100臺(tái)學(xué)習(xí)機(jī)銷售總利潤(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,點(diǎn)E,F分別是BCAD的中點(diǎn).

1)求證:;

2)當(dāng)滿足什么數(shù)量關(guān)系時(shí),四邊形是正方形?請(qǐng)證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)的坐標(biāo)為,拋物線經(jīng)過兩點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)是直線上方拋物線上的一點(diǎn),過點(diǎn)軸于點(diǎn),交線段于點(diǎn),使

求點(diǎn)的坐標(biāo)和的面積;

在直線上是否存在點(diǎn),使為直角三角形?若存在,直接寫出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案