如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱(chēng)為這個(gè)平面圖形的一條面積等分線,例如平行四邊形的一條對(duì)角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有______;
(2)如圖,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過(guò)點(diǎn)A作出梯形ABCD的面積等分線(不寫(xiě)作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫(huà)出面積等分線,并給出證明;若不能,說(shuō)明理由.

【答案】分析:(1)讀懂面積等分線的定義,不難得出:一定是三角形的面積等分線的是三角形的中線所在的直線;
(2)根據(jù)等底等高可得S△ABC=S△AEC,即可證明S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;過(guò)點(diǎn)A的梯形ABCD的面積等分線的畫(huà)法,可以先作DE的垂直平分線,找到DE的中點(diǎn)G,再連接AG即可;
(3)能,連接AC,過(guò)點(diǎn)B作BE∥AC交DC的延長(zhǎng)線于點(diǎn)E,連接AE,證明可仿照(2)進(jìn)行.
解答:解:(1)中線所在的直線;(2分)

(2)方法一:連接BE,因?yàn)锳B∥CE,AB=CE,所以四邊形ABEC為平行四邊形,
所以BE∥AC(3分),
所以△ABC和△AEC的公共邊AC上的高也相等,
所以有S△ABC=S△AEC,
所以S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.(5分)
方法二:設(shè)AE與BC相交于點(diǎn)F.
因?yàn)锳B∥CE所以∠ABF=∠ECF,∠BAF=∠CEF,
又因?yàn)锳B=CE,
所以△ABF≌△ECF,(4分)
所以S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.(5分)
過(guò)點(diǎn)A的梯形ABCD的面積等分線的畫(huà)法如圖所示:作DE的垂直平分線,交DE于G,連接AG.則AG是梯形ABCD的面積等分線;


(3)能,連接AC,過(guò)點(diǎn)B作BE∥AC交DC的延長(zhǎng)線于點(diǎn)E,連接AE.
因?yàn)锽E∥AC,所以△ABC和△AEC的公共邊AC上的高也相等,所以有S△ABC=S△AEC,
所以S四邊形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.(8分)
因?yàn)镾△ACD>S△ABC,
所以面積等分線必與CD相交,取DE中點(diǎn)F,則直線AF即為要求作的四邊形ABCD的面積等分線,作圖如下:
(10分)
點(diǎn)評(píng):本題考查了學(xué)生的閱讀理解能力、運(yùn)用作圖工具的能力,以及運(yùn)用三角形、等底等高性質(zhì)等基礎(chǔ)知識(shí)解決問(wèn)題的能力都有較高的要求.還滲透了由“特殊”到“一般”的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面上,給定了半徑為r的圓O,對(duì)于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這把點(diǎn)P變?yōu)辄c(diǎn)P的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn).
(1)如圖2,⊙O內(nèi)外各一點(diǎn)A和B,它們的反演點(diǎn)分別為A和B′.求證:∠A′=∠B;
(2)如果一個(gè)圖形上各點(diǎn)經(jīng)過(guò)反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.
精英家教網(wǎng)
①選擇:如果不經(jīng)過(guò)點(diǎn)O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( 。
A、一個(gè)圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是
 
,該圖形與圓O的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過(guò)點(diǎn)A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因?yàn)镾△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣,
同底等高的兩三角形面積相等
同底等高的兩三角形面積相等

(2)結(jié)論證明:如果一條直線(線段)把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱(chēng)為這個(gè)平面圖形的一條面積等分線(段),如,平行四變形的一條對(duì)角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過(guò)點(diǎn)B作BE∥AC,交DC延長(zhǎng)線于點(diǎn)E,連接點(diǎn)A和DE的中點(diǎn)P,則AP即為梯形ABCD的面積等分線段,請(qǐng)你寫(xiě)出這個(gè)結(jié)論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否做出四邊形ABCD的面積等分線(段)?若能,請(qǐng)畫(huà)出面積等分線(用鋼筆或圓珠筆畫(huà)圖,不用寫(xiě)作法),不要證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過(guò)點(diǎn)A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因?yàn)镾△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣,______.
(2)結(jié)論證明:如果一條直線(線段)把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱(chēng)為這個(gè)平面圖形的一條面積等分線(段),如,平行四變形的一條對(duì)角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過(guò)點(diǎn)B作BE∥AC,交DC延長(zhǎng)線于點(diǎn)E,連接點(diǎn)A和DE的中點(diǎn)P,則AP即為梯形ABCD的面積等分線段,請(qǐng)你寫(xiě)出這個(gè)結(jié)論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否做出四邊形ABCD的面積等分線(段)?若能,請(qǐng)畫(huà)出面積等分線(用鋼筆或圓珠筆畫(huà)圖,不用寫(xiě)作法),不要證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過(guò)點(diǎn)A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因?yàn)镾△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣,______.
(2)結(jié)論證明:如果一條直線(線段)把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱(chēng)為這個(gè)平面圖形的一條面積等分線(段),如,平行四變形的一條對(duì)角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過(guò)點(diǎn)B作BE∥AC,交DC延長(zhǎng)線于點(diǎn)E,連接點(diǎn)A和DE的中點(diǎn)P,則AP即為梯形ABCD的面積等分線段,請(qǐng)你寫(xiě)出這個(gè)結(jié)論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否做出四邊形ABCD的面積等分線(段)?若能,請(qǐng)畫(huà)出面積等分線(用鋼筆或圓珠筆畫(huà)圖,不用寫(xiě)作法),不要證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇省泰州市泰興市橫垛初中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖1,在平面上,給定了半徑為r的圓O,對(duì)于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這把點(diǎn)P變?yōu)辄c(diǎn)P的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn).
(1)如圖2,⊙O內(nèi)外各一點(diǎn)A和B,它們的反演點(diǎn)分別為A和B′.求證:∠A′=∠B;
(2)如果一個(gè)圖形上各點(diǎn)經(jīng)過(guò)反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.

①選擇:如果不經(jīng)過(guò)點(diǎn)O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( )
A、一個(gè)圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是______,該圖形與圓O的位置關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案