【題目】已知:如圖,△ABC是等邊三角形,點D、E分別是邊BC、CA上的點,且BD=CE,AD、BE相交于點O.
(1)求證:△BAE≌△ACD;
(2)求∠AOB的度數(shù).
【答案】(1)證明見解析(2)120°
【解析】
試題(1)根據(jù)等邊三角形的性質(zhì)求出∠BAC=∠C=60°,AC=BC,求出AE=CD,根據(jù)SAS推出全等即可;
(2)根據(jù)全等三角形的性質(zhì)求出∠CAD=∠ABE,根據(jù)三角形外角性質(zhì)求出∠AOE=∠BAC=60°,即可得出答案.
試題解析:(1)∵△ABC是等邊三角形,
∴∠BAC=∠C=60°,BC=AC,
∵BD=CE,
∴BC-BD=AC-CE,
∴AE=CD,
在△ACD和△BAE中
∴△ACD≌△BAE(SAS);
(2)∵△ACD≌△BAE,
∴∠CAD=∠ABE,
∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,
∴∠AOB=180°-60°=120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017湖北省鄂州市,第8題,3分)小東家與學(xué)校之間是一條筆直的公路,早飯后,小東步行前往學(xué)校,圖中發(fā)現(xiàn)忘帶畫板,停下給媽媽打電話,媽媽接到電話后,帶上畫板馬上趕往學(xué)校,同時小東沿原路返回,兩人相遇后,小東立即趕往學(xué)校,媽媽沿原路返回16min到家,再過5min小東到達學(xué)校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說法:
①打電話時,小東和媽媽的距離為1400米;
②小東和媽媽相遇后,媽媽回家的速度為50m/min;
③小東打完電話后,經(jīng)過27min到達學(xué)校;
④小東家離學(xué)校的距離為2900m.
其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC的取值范圍是_______________________;中線AD的取值范圍是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中, , .以 為直徑的 交 于點 , 是 上一點,且 ,連接 ,過點 作 ,交 的延長線于點 ,則 的度數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,學(xué)校開展“讓書香溢滿校園”讀書活動,以提升青少年的閱讀興趣,九年級(1)班數(shù)學(xué)活動小組對本年級600名學(xué)生每天閱讀時間進行了統(tǒng)計,根據(jù)所得數(shù)據(jù)繪制了兩幅不完整統(tǒng)計圖(每組包括最小值不包括最大值).九年級(1)班每天閱讀時間在0.5小時以內(nèi)的學(xué)生占全班人數(shù)的8%.根據(jù)統(tǒng)計圖解答下列問題:
(1)九年級(1)班有 名學(xué)生;
(2)補全直方圖;
(3)除九年級(1)班外,九年級其他班級每天閱讀時間在1~1.5小時的學(xué)生有165人,請你補全扇形統(tǒng)計圖;
(4)求該年級每天閱讀時間不少于1小時的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實現(xiàn)目標?
(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費用為1.5元,政府補貼0.3元.企業(yè)將淡化水以3.2元/m3的價格出售,每年還需各項支出40萬元.按每年實際生產(chǎn)300天計算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是延長FD到點G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
(3)結(jié)論應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.
(4)能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,試求出MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從大拇指開始,按照大拇指→食指→中指→無名指→小指→無名指→中指→食指→大拇指→ 食指的順序,依次數(shù)整數(shù) 1,2,3,4,5,6,7,,當數(shù)到 2019 時,對應(yīng)的手指為________________; 當?shù)?/span> n 次數(shù)到食指時,數(shù)到的數(shù)是_________________________ (用含 n 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位采購員同去一家飼料公司購買兩次飼料.兩次飼料的價格有變化,兩位采購員的購貨方式也不同,其中,甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料.
(1)甲、乙所購飼料的平均單價各是多少?
(2)誰的購貨方式更合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com