如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請(qǐng)?zhí)骄浚航?jīng)過(guò)點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過(guò)矩形CFED的對(duì)稱中心M,并說(shuō)明理由.
(1)∵圖形旋轉(zhuǎn)后BC=CD,∠BCD=∠α=60°
∴△BCD是等邊三角形;

(2)設(shè)AH=x,則HB=AB-AH=6-x,
依題意可得:AB=OC=6,BC=OA=4,
在Rt△BHC中,HC2=BC2+HB2,
即x2-(6-x)2=16,
解得x=
13
3

∴H(
13
3
,4).
設(shè)y=kx+b,把H(
13
3
,4),C(6,0)代入y=kx+b,
13
3
k+b=4
6k+b=0

解得
k=-
12
5
b=
72
5

∴y=-
12
5
x+
72
5


(3)拋物線頂點(diǎn)為B(6,4),
設(shè)y=a(x-6)2+4,
把D(10,0)代入得:a=-
1
4

∴y=-
1
4
(x-6)2+4(或y=-
1
4
x2+3x-5).
依題可得,點(diǎn)M坐標(biāo)為(8,3),
把x=8代入y=-
1
4
(x-6)2+4,得y=3.
∴拋物線經(jīng)過(guò)矩形CFED的對(duì)稱中心M.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,開(kāi)口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長(zhǎng)分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)過(guò)點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(diǎn)(A在B的左邊),交y軸于C點(diǎn),且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使△PBC是直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-1,0),(0,2),當(dāng)y隨x的增大而增大時(shí),x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0)、E(5,0)兩點(diǎn),與y軸交于點(diǎn)B(0,5).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)題中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在拋物線上滑動(dòng)到什么位置時(shí),滿足S△PAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo);
(3)設(shè)(1)題中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,小明把一張長(zhǎng)為20cm,寬為10cm的矩形硬紙板的四周各剪去一個(gè)同樣大小的正方形,再折合成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.設(shè)剪去的正方形邊長(zhǎng)為x(cm),折成的長(zhǎng)方體盒子的側(cè)面積為y(cm2),底面積為S(cm2).
(1)求S與x之間的函數(shù)關(guān)系式,并求S=44(cm2)時(shí)x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過(guò)程中,y會(huì)不會(huì)有最大值?x取何值時(shí)取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-2ax+3的圖象與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+b,又tan∠OBC=1.
(1)求二次函數(shù)的解析式和直線DC的函數(shù)關(guān)系式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,鉛球的出手點(diǎn)C距地面1米,出手后的運(yùn)動(dòng)路線是拋物線,出手后4秒鐘達(dá)到最大高度3米,則鉛球運(yùn)行路線的解析式為( 。
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

同步練習(xí)冊(cè)答案