【題目】如圖,ADBCD,EGBCG,∠E=∠l,可得AD平分∠BAC,理由如下:

ADBCDEGBCG(已知),

∴∠ADC=∠EGC90°    ),

ADEG    ),

∴∠1      ),

3=∠E(兩直線平行,同位角相等),

又∵∠E=∠1(已知),

∴∠2=∠3    ),

AD平分∠BAC    ).

【答案】垂直的定義;同位角相等,兩直線平行;∠2,兩直線平行,內(nèi)錯(cuò)角相等;等量代換;角平分線定義.

【解析】

根據(jù)垂直的定義、平行線的性質(zhì)及判定、角平分線的定義完成本題推理即可.

ADBCDEGBCG(已知),

∴∠ADC=∠EGC90° (垂直的定義),

ADEG (同位角相等,兩直線平行),

∴∠1=∠2(兩直線平行,內(nèi)錯(cuò)角相等),

3=∠E(兩直線平行,同位角相等),

又∵∠E=∠1(已知),

∴∠2=∠3 (等量代換),

AD平分∠BAC (角平分線定義).

故答案為:垂直的定義;同位角相等,兩直線平行;∠2,兩直線平行,內(nèi)錯(cuò)角相等;等量代換;角平分線定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線 經(jīng)過坐標(biāo)原點(diǎn),且當(dāng) 時(shí), y隨x的增大而減小.
(1)求拋物線的解析式;
(2)如下圖,設(shè)點(diǎn)A是該拋物線上位于x軸下方的一個(gè)動(dòng)點(diǎn),過點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)D,再作AB x軸于點(diǎn)B, DC x軸于點(diǎn)C.

①當(dāng) BC=1時(shí),直接寫出矩形ABCD的周長(zhǎng);
②設(shè)動(dòng)點(diǎn)A的坐標(biāo)為(a, b),將矩形ABCD的周長(zhǎng)L表示為a的函數(shù),并寫出自變量的取值范圍,判斷周長(zhǎng)是否存在最大值,如果存在,求出這個(gè)最大值,并求出此時(shí)點(diǎn)A的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對(duì)稱軸是直線x=1,有以下四個(gè)結(jié)論:
①abc>0;②b2-4ac>0;③b=-2a;④a+b+c>2.其中正確的是 (填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x 2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知經(jīng)過B、C兩點(diǎn)的直線的表達(dá)式為y=-x+3.

(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P(m,0)是線段OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交直線BC于D,交拋物線于E,EF∥x軸,交直線BC于F,DG∥x軸,F(xiàn)G∥y軸,DG與FG交于點(diǎn)G.設(shè)四邊形DEFG的面積為S,當(dāng)m為何值時(shí)S最大,最大值是多少?
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,將△OAC繞點(diǎn)Q逆時(shí)針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.若存在,求出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組為了解同學(xué)們上學(xué)年參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查了該市部分八年級(jí)學(xué)生,來了解上學(xué)年參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了如圖兩幅不完整的統(tǒng)計(jì)圖請(qǐng)你根據(jù)圖中提供的信息問答下列問題:

本次共抽查了多少人?

補(bǔ)全條形統(tǒng)計(jì)圖.

在這次調(diào)查中,參加社會(huì)實(shí)踐活動(dòng)天數(shù)的眾數(shù)和中位數(shù)分別是多少?

如果本區(qū)市共有八年級(jí)學(xué)生14400人,請(qǐng)你估計(jì)參加社會(huì)實(shí)踐活動(dòng)時(shí)間不少于9的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)23﹣17﹣(﹣7)+(﹣16);

(2)-5+6÷(-2)×;

(3)-36×

(4)﹣23+|5﹣8|+24÷(﹣3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公司投資750萬元,成功研制出一種市場(chǎng)需求量較大的產(chǎn)品,并再投入資金1750萬元進(jìn)行相關(guān)生產(chǎn)設(shè)備的改進(jìn).已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價(jià)定為120元時(shí),年銷售量為24萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額﹣生產(chǎn)成本)為z(萬元).
(1)求出y與x之間,z與x之間的函數(shù)關(guān)系式;
(2)該公司能否在第一年收回投資.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件:①∠AB=∠C; ②∠ABC=235; ③∠A=B= C④∠A=∠B=2∠C;⑤∠A=∠B= C,其中能確定ABC 為直角三角形的條件有 ( )

A.2 個(gè)B.3 個(gè)C.4 個(gè)D.5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DMEN分別垂直平分ACBC,交ABM、N兩點(diǎn),DMEN相交于點(diǎn)F

1)若△CMN的周長(zhǎng)為15cm,求AB的長(zhǎng);

2)若∠MFN=70°,求∠MCN的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案