精英家教網 > 初中數學 > 題目詳情

【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0),C(0,-3)

(1) 求拋物線的解析式;

(2) 若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

(3) 若點Ex軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

【答案】(1);(2)SACD的最大值為;(3)見解析.

【解析】

1)將B、C的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式.

(2)根據A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則ABC的面積不變,若四邊形ABCD面積最大,則ADC的面積最大;過點DDEy軸交ACE,則E(m,﹣m﹣3),可得到當ADC面積有最大值時,四邊形ABCD的面積最大值,然后列出四邊形的面積與m的函數關系式,利用配方法可求得此時m的取值范圍;

(3)本題應分情況討論:①過Cx軸的平行線,與拋物線的交點符合P點的要求,此時P、C的縱坐標相同,代入拋物線的解析式中即可求出P點坐標;②將AC平移,令C點落在x軸(即E點)、A點落在拋物線(即P點)上;可根據平行四邊形的性質,得出P點縱坐標(P、C縱坐標的絕對值相等),代入拋物線的解析式中即可求得P點坐標.

解:(1)將點B、C的坐標代入拋物線的解析式得:,

解得:a=,c=﹣3.

∴拋物線的解析式為y=x2+x﹣3

(2)令y=0,則x2+x﹣3=0,解得x1=1,x2=﹣4

A(﹣4,0)、B(1,0)

x=0,則y=﹣3

C(0,﹣3)

SABC=×5×3=

D(m,m2+m﹣3)

過點DDEy軸交ACE.直線AC的解析式為y=﹣x﹣3,則E(m,﹣m﹣3)

DE=﹣m﹣3﹣(m2+m﹣3)=﹣(m+2)2+3

m=﹣2時,DE有最大值為3

此時,SACD有最大值為×DE×4=2DE=6

∴四邊形ABCD的面積的最大值為6+=

(3)如圖所示:

①過點CCP1x軸交拋物線于點P1,過點P1P1E1ACx軸于點E1,此時四邊形ACP1E1為平行四邊形,

C(0,﹣3)

∴設P1(x,﹣3)

x2+x﹣3=﹣3

解得x1=0,x2=﹣3

P1(﹣3,﹣3);

②平移直線ACx軸于點E,交x軸上方的拋物線于點P,當AC=PE時,四邊形ACEP為平行四邊形,

C(0,﹣3)

∴設P(x,3),

x2+x﹣3=3,

解得x=x=,

P2,3)或P3,3)

綜上所述存在3個點符合題意,坐標分別是P1(﹣3,﹣3)或P2,3)或P3,3).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線分別交軸、軸于兩點,線段上有一動點由原點向點運動,速度為每秒個單位長度,設運動時間為秒.

直接填出兩點的坐標:________,________

過點作直線截,使截得的三角形與相似,若當在某一位置時,滿足條件的直線共有條,的取值范圍是________

如圖,過點軸的垂線交直線于點,設以為頂點的拋物線與直線的另一交點為

①用含的代數式分別表示________________

②隨著點運動,的長是否為定值?若是,請求出長;若不是,說明理由;

③設邊上的高為,請直接寫出當為何值時,的值最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的圖象如圖所示,下列說法:①,②當時,,③若、在函數圖象上,當時,,④,其中正確的是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖①②,試研究其中∠12與∠3、4之間的數量關系;

(2)如果我們把∠1、2稱為四邊形的外角,那么請你用文字描述上述的關系式;

(3)用你發(fā)現的結論解決下列問題:

如圖,AEDE分別是四邊形ABCD的外角∠NAD、MDA的平分線,B+C=240°,求∠E的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABCBC邊上的垂直平分線DEBAC得平分線交于點E,EFABAB的延長線于點FEGAC交于點G

求證:(1BF=CG;(2AF=AB+AC).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先閱讀下面的內容,再解決問題.

例題:若,求的值.

解:∵

,

問題:(1),求的值;

(2)已知的三邊長,滿足,且中最長的邊的長度為,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一艘輪船以每小時40海里的速度在海面上航行,當該輪船行駛到B處時,發(fā)現燈塔C在它的東北方向,輪船繼續(xù)向北航行,30分鐘后到達A處,此時發(fā)現燈塔C在它的北偏東75°方向上,求此時輪船與燈塔C的距離.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數.

2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的坐標系中,△ABC的三個頂點的坐標分別為A1,2),B4,1),C2,﹣2).

1)請寫出△ABC關于x軸對稱的點A1B1,C1的坐標;

2)請在坐標系中作出△ABC關于y軸對稱的△A2B2C2

3)計算△ABC的面積.

查看答案和解析>>

同步練習冊答案