如圖,三角形ABC放置在直角坐標(biāo)系中,若變換成關(guān)于x軸對稱的圖形,則點的坐標(biāo)為

[  ]

A.(2,2)
B.(2,1)
C.(2,-1)
D.(2,-2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

實踐探究題:
(1)如圖1,在直角坐標(biāo)系中,一個直角邊為4等腰直角三角形板ABC的直角頂點B放至點O的位置,點A、C分別在x軸的負(fù)半軸和y軸的正半軸上,將△ABC繞點A逆時針旋轉(zhuǎn)90°至△AKL的位置,求直線AL的解析式;
(2)如圖2,將任意兩個等腰直角三角板△ABC和△MNP放至直角坐標(biāo)系中,直角頂點B、N分別在y軸的正半軸和負(fù)半軸上,頂點M、A都在x軸的負(fù)半軸上,頂點C、P分別在第二象限和第三象限,AC和MP的中點分別為E、F,請判斷△OEF的形狀,并證明你的結(jié)論;
(3)如圖3,將第(1)問中的等腰直角三角形板ABC順時針旋轉(zhuǎn)180°至△OMN的位置.G為線段OC的延長線上任意一點,作GH⊥AG交x軸于H,并交直線MN于Q.請?zhí)骄肯旅鎯蓚結(jié)論:①
GN+GC
NQ
為定值;②
GN-GC
NQ
為定值.其中只有一個是正確的,請判斷正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•靜安區(qū)一模)如果將一個三角形繞著它一個角的頂點旋轉(zhuǎn)后使這個角的一邊與另一邊重疊,再將旋轉(zhuǎn)后的三角形相似縮放,使重疊的兩邊互相重合,我們稱這樣的圖形為三角形轉(zhuǎn)似,這個角的頂點稱為轉(zhuǎn)似中心,所得的三角形稱為原三角形的轉(zhuǎn)似三角形.如圖,在△ABC中,AB=6,BC=7,AC=5,△A1B1C是△ABC以點C為轉(zhuǎn)似中心的其中一個轉(zhuǎn)似三角形,那么以點C為轉(zhuǎn)似中心的另一個轉(zhuǎn)似三角形△A2B2C(點A2,B2分別與A、B對應(yīng))的邊A2B2的長為
150
49
150
49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【問題】在正方形網(wǎng)格中,如圖(一),△OAB的頂點分別為O(0,0),A(1,2),B(2,-1).
(1)以點O(0,0)為位似中心,按比例尺3:1在位似中心的同側(cè)將△OAB放大為△OA′B′,放大后點A、B的對應(yīng)點分別為A′、B′.畫出△OA′B′,并寫出點A'、B'的坐標(biāo):A′(
3
3
,
6
6
),B′(
6
6
-3
-3
);
(2)在(1)中,若點C(a,b)為線段AB上任一點,寫出變化后點C的對應(yīng)點C′的坐標(biāo)(
3a
3a
3b
3b
);
【拓展】在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點P,它的對應(yīng)點P'在線段OP或其延長線上;接著將所得多邊形以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度θ,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
【探索】如圖(二),完成下列問題:
(3)填空:如圖1,將△ABC以點A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn)60°,得到△ADE,這個旋轉(zhuǎn)相似變換記為A(
2
2
,
60°
60°
);
(4)如圖2,△ABC是邊長為3cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
43
,90°)
,得到△ADE,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

【問題】在正方形網(wǎng)格中,如圖(一),△OAB的頂點分別為O(0,0),A(1,2),B(2,-1).
(1)以點O(0,0)為位似中心,按比例尺3:1在位似中心的同側(cè)將△OAB放大為△OA′B′,放大后點A、B的對應(yīng)點分別為A′、B′.畫出△OA′B′,并寫出點A'、B'的坐標(biāo):A′(______,______),B′(______,______);
(2)在(1)中,若點C(a,b)為線段AB上任一點,寫出變化后點C的對應(yīng)點C′的坐標(biāo)(______,______);
【拓展】在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點P,它的對應(yīng)點P'在線段OP或其延長線上;接著將所得多邊形以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度θ,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
【探索】如圖(二),完成下列問題:
(3)填空:如圖1,將△ABC以點A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn)60°,得到△ADE,這個旋轉(zhuǎn)相似變換記為A(______,______);
(4)如圖2,△ABC是邊長為3cm的等邊三角形,將它作旋轉(zhuǎn)相似變換數(shù)學(xué)公式,得到△ADE,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點P,它的對應(yīng)點P’ 在線段OP或其延長線上;接著將所得多邊形以點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度θ,這種經(jīng)過放縮和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O( k, θ ),其中點O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.

(1)填空:

  ①如圖1,將△ABC以點A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn)60°,得到△ADE,這個旋轉(zhuǎn)相似變換記為A               ,                  );

②如圖2,△ABC是邊長為的等邊三角形,將它作旋轉(zhuǎn)相似變換A,90°),得到△ADE,則線段BD的長為                            cm;

(2)如圖3,分別以銳角三角形ABC的三邊ABBC、CA為邊向外作正方形ADEB、BFGC、CHIA,點O1、O2O3分別是這三個正方形的對角線交點,試分別利用△AO1O3與△ABI、△CIB與△CAO2之間的關(guān)系,運用旋轉(zhuǎn)相似變換的知識說明線段O1O3AO2之間的關(guān)系.

 


查看答案和解析>>

同步練習(xí)冊答案