【題目】如圖,矩形ABCD中,AB=8,BC=12,E為AD中點(diǎn),F為AB上一點(diǎn),將△AEF沿EF折疊后,點(diǎn)A恰好落到CF上的點(diǎn)G處,則折痕EF的長(zhǎng)是_____.
【答案】.
【解析】
連接EC,構(gòu)造相似三角形△FEC∽△EDC,推出,結(jié)合勾股定理即可解得.
如圖,連接EC,
∵四邊形ABCD為矩形,
∴∠A=∠D=90°,BC=AD=12,DC=AB=8,
∵E為AD中點(diǎn),
∴AE=DE=AD=6,
由翻折知,△AEF≌△GEF,
∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,
∴GE=DE,
∴EC平分∠DCG,
∴∠DCE=∠GCE,
∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,
∴∠GEC=∠DEC,
∴∠FEC=∠FEG+∠GEC=×180°=90°,
∴∠FEC=∠D=90°,
又∵∠DCE=∠GCE,
∴△FEC∽△EDC,
∴,
∵EC==10,
∴,
∴FE=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數(shù)為( 。
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公共汽車線路每天運(yùn)營(yíng)毛利潤(rùn)(萬元)與乘客量(萬人)成一次函數(shù)關(guān)系,其圖象如圖所示.目前通過監(jiān)測(cè)發(fā)現(xiàn)每天平均乘客量為0.6萬人次,由于運(yùn)營(yíng)成本較高,這條線路處于虧損狀態(tài).(毛利潤(rùn)=票價(jià)總收入一運(yùn)營(yíng)成本)
(1)求該線路公共汽車的單程票價(jià)和每天運(yùn)營(yíng)成本分別為多少元.
(2)公交公司為了扭虧,若要使每天運(yùn)營(yíng)毛利潤(rùn)在0.2~0.4萬元之間(包括0.2和0.4),求平均每天的乘客量的范圍.
(3)據(jù)實(shí)際情況,發(fā)現(xiàn)該線路乘客量穩(wěn)定,公交公司決定適當(dāng)提高票價(jià),當(dāng)單程票價(jià)每提高1元時(shí),每天平均乘客量相應(yīng)減少0.05萬人次,設(shè)這條線路的單程票價(jià)提高元().當(dāng)為何值時(shí),該線路每天運(yùn)營(yíng)總利潤(rùn)最大,并求出最大的總利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AC為一條對(duì)角線,且.延長(zhǎng)BC到點(diǎn)E,使,連接DE.
(1)判斷四邊形ACED的形狀,并說明理由;
(2)連接AE交CD于點(diǎn)F,若,,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面中,給定線段AB和C,P兩點(diǎn),點(diǎn)C與點(diǎn)P分布在線段AB的異側(cè),滿足,則稱點(diǎn)C與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,已知點(diǎn),,.
(1)在,,三個(gè)點(diǎn)中,點(diǎn)O與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn)的是________;
(2)若點(diǎn)C與點(diǎn)P是關(guān)于線段OA的關(guān)聯(lián)點(diǎn),求點(diǎn)P的縱坐標(biāo)m的取值范圍;
(3)直線與x軸,y軸分別交與點(diǎn)E,F,若在線段AB上存在點(diǎn)P與點(diǎn)O是關(guān)于線段EF的關(guān)聯(lián)點(diǎn),直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支援災(zāi)區(qū),某校愛心活動(dòng)小組準(zhǔn)備用籌集的資金購買A、B兩種型號(hào)的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購買B型學(xué)習(xí)用品的件數(shù)與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.
(1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?
(2)若購買這批學(xué)習(xí)用品的費(fèi)用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,∠BCD=120°,A為的中點(diǎn),延長(zhǎng)BA到點(diǎn)P,使BA=AP,連接PE.
(1)求線段BD的長(zhǎng);
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.
填空: ①的值為 ;②∠DBE的度數(shù)為 .
(2)類比探究
如圖2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.請(qǐng)判斷的值及∠DBE的度數(shù),并說明理由.
(3)拓展延伸
如面3,在(2)的條件下,將點(diǎn)D改為直線AB上一動(dòng)點(diǎn),其余條件不變,取線段DE的中點(diǎn)M,連接BM、CM,若AC=2,則當(dāng)△CBM是直角三角形時(shí),線段BE的長(zhǎng)是多少?請(qǐng)直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com