【題目】如圖1,在四邊形ABCD中, ABC=30, ADC=60,AD=DC
(1)連接AC, 則 ADC的形狀是 ________三角形
(2)如圖2,在四邊形ABCD的外部以BC為一邊作等邊 BCE,,并連接AE,
試說明:BD=AE
請你說明 成立的理由。
圖1 圖2
【答案】(1)等邊;(2)見解析
【解析】試題分析:(1)先證明△ADC是等腰三角形,再根據(jù)一個內(nèi)角為60°的等腰三角形是等邊三角形判斷△ADC是等邊三角形;
(2)要證明BD2=AB2+BC2,只需證明△ABE是直角三角形即可(BD=AE).
試題解析:
(1)∵在△ADC中,AD=AC,
∴△ADC是等腰三角形,
又∵∠ADC=60°,
∴△ADC是等邊三角形(一個內(nèi)角為60°的等腰三角形是等邊三角形);
故答案是:等邊;
(2))∵由(1)知,△ADC是等邊三角形,
∴DC=AC,∠DCA=60°;
又∵△BCE是等邊三角形,則BC=CE,∠CBE=60°.
∴∠ABE=∠ABC+∠CBE=90°.
在Rt△ABE中,由勾股定理得AE2=AB2+BE2.
又∵BD=AE,
∴BD2=AB2+BC2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“經(jīng)典誦讀”校園演講比賽中,有11名學(xué)生參加初賽,他們的得分互不相同,按從高分錄到低分的原則,取前6名同學(xué)參加復(fù)賽,現(xiàn)在小明同學(xué)已經(jīng)知道自己的分?jǐn)?shù),如果他想知道自己能否進(jìn)入復(fù)賽,那么還需知道所有參賽學(xué)生成績的( ).
A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】魔術(shù)師為大家表演魔術(shù).他請觀眾想一個數(shù),然后將這個數(shù)按以下步驟操作:
魔術(shù)師立刻說出觀眾想的那個數(shù).
(1)如果小明想的數(shù)是-1,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是________;
(2)如果小聰想了一個數(shù)并告訴魔術(shù)師結(jié)果為93,那么魔術(shù)師立刻說出小聰想的那個數(shù)是________;
(3)觀眾又進(jìn)行了幾次嘗試,魔術(shù)師都能立刻說出他們想的那個數(shù),請你說出其中的奧妙.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是一個兩位數(shù),b是一個三位數(shù).如果把這個兩位數(shù)放在這個三位數(shù)的前面,組成一個五位數(shù),則這個五位數(shù)可以表示為( )
A. ab B. 100a+b C. 1000a+b D. a+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣東省梅州市第15題)如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進(jìn)行下去….若點A(,0),B(0,2),則點B2016的坐標(biāo)[來為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于一次函數(shù)y=kx+b,我們把點(b,k)稱為這個一次函數(shù)的伴隨點.已知一次函數(shù)y=﹣2x+m的伴隨點在它的圖象上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,.
(1)如圖1,若點關(guān)于直線的對稱點為,求證:∽;
(2)如圖2,在(1)的條件下,若,求證:;
(3)如圖3,若,點在的延長線上,則等式還能成立嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com