如圖,點D、E分別在線段AB、AC上,已知AD=AE,∠B=∠C,H為線段BE、CD的交點,求證:BH=CH.

 

 

【答案】

證明詳見解析.

【解析】

試題分析:由AD=AE,∠B=∠C,加上公共角∠A,易用AAS證△ADC≌△AEB,進而可得:AB=AC;利用等式的性質(zhì)又可得出:BD=CE,根據(jù)對頂角相等可得∠DHB=∠EHC,繼續(xù)用AAS證△BHD≌△CHE,由全等三角形的性質(zhì)即可得出結(jié)論:BH=CH.

試題解析:

證明:在△ADC和△AEB中,

,

∴△ADC≌△AEB(AAS),

∴AB=AC,

∴AB-AD=AC-AE,

∴BD=CE.

∵在△BHD和△CHE中

∴△BHD≌△CHE

∴BH=CH.

考點:1、三角形全等的判定.2、全等三角形的性質(zhì).

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當
b
a
是整數(shù)時,滿足條件的整數(shù)k的值共有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,點M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,點D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補充下列一個條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A、B分別在直線l1、l2上,過點A作到l2的距離AM,過點B作直線l3∥l1

查看答案和解析>>

同步練習冊答案