【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°時(shí),試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
【答案】
(1)
證明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,
∴∠A=∠B=∠D=∠E=45°.
在△BCF和△ECH中,,
∴△BCF≌△ECH(ASA),
∴CF=CH(全等三角形的對應(yīng)邊相等);
(2)
解:四邊形ACDM是菱形.
證明:∵∠ACB=∠DCE=90°,∠BCE=45°,
∴∠1=∠2=45°.
∵∠E=45°,
∴∠1=∠E,
∴AC∥DE,
∴∠AMH=180°﹣∠A=135°=∠ACD,
又∵∠A=∠D=45°,
∴四邊形ACDM是平行四邊形(兩組對角相等的四邊形是平行四邊形),
∵AC=CD,
∴四邊形ACDM是菱形.
【解析】(1)要證明CF=CH,可先證明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;
(2)根據(jù)△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°,推出四邊形ACDM是平行四邊形,由AC=CD判斷出四邊形ACDM是菱形.
此題考查了圖形的旋轉(zhuǎn)問題,涉及知識(shí)點(diǎn)有全等三角形、平行四邊形和菱形的判定。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4個(gè)結(jié)論中,正確的有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+mx+m﹣1=0有兩個(gè)相等的實(shí)數(shù)根.
(1)求m的值;
(2)解原方程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2的圖象經(jīng)過點(diǎn)(2,1).
(1)求二次函數(shù)y=ax2的解析式;
(2)一次函數(shù)y=mx+4的圖象與二次函數(shù)y=ax2的圖象交于點(diǎn)A(x1、y1)、B(x2、y2)兩點(diǎn).
①當(dāng)m=時(shí)(圖①),求證:△AOB為直角三角形;
②試判斷當(dāng)m≠時(shí)(圖②),△AOB的形狀,并證明; n>S扇形DOE求得即可.
(3)根據(jù)第2問,說出一條你能得到的結(jié)論.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),請解決下列問題.
(1)填空:點(diǎn)C的坐標(biāo)為 點(diǎn)D的坐標(biāo)為 ;
(2)設(shè)點(diǎn)P的坐標(biāo)為(a,0),當(dāng)|PD﹣PC|最大時(shí),求α的值并在圖中標(biāo)出點(diǎn)P的位置;
(3)在(2)的條件下,將△BCP沿x軸的正方向平移得到△B′C′P′,設(shè)點(diǎn)C對應(yīng)點(diǎn)C′的橫坐標(biāo)為t(其中0<t<6),在運(yùn)動(dòng)過程中△B′C′P′與△BCD重疊部分的面積為S,求S與t之間的關(guān)系式,并直接寫出當(dāng)t為何值時(shí)S最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在以O(shè)為圓心3cm為半徑的圓周上,依次有A、B、C三個(gè)點(diǎn),若四邊形OABC為菱形,則該菱形的邊長等于 cm;弦AC所對的弧長等于 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB°,AB=5,BC=3,P是AB邊上的動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BCP沿CP所在的直線翻折,得到△B′CP,連接B′A,則B′A長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形上)
(1)畫出△ABC關(guān)于直線l:x=﹣1的對稱三角形△A1B1C1;并寫出A1、B1、C1的坐標(biāo).
(2)在直線x=﹣l上找一點(diǎn)D,使BD+CD最小,滿足條件的D點(diǎn)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com