(2013•濟(jì)南)如圖,直線(xiàn)a,b被直線(xiàn)c所截,a∥b,∠1=130°,則∠2的度數(shù)是(  )
分析:由直線(xiàn)a,b被直線(xiàn)c所截,a∥b,∠1=130°,根據(jù)平行線(xiàn)的性質(zhì),可求得∠3的度數(shù),又由鄰補(bǔ)角的定義,即可求得答案.
解答:解:∵a∥b,∠1=130°,
∴∠3=∠1=130°,
∴∠2=180°-∠3=50°.
故選C.
點(diǎn)評(píng):此題考查了平行線(xiàn)的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-1,0),B(-2,3),C(-3,1),將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,得到△AB′C′,則點(diǎn)B′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南)如圖,點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線(xiàn)BC交y軸于點(diǎn)D,過(guò)點(diǎn)A作直線(xiàn)AE⊥BD,垂足為E,交OC于點(diǎn)F.
(1)求直線(xiàn)BD的函數(shù)表達(dá)式;
(2)求線(xiàn)段OF的長(zhǎng);
(3)連接BF,OE,試判斷線(xiàn)段BF和OE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南)如圖1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC關(guān)于AB所在的直線(xiàn)對(duì)稱(chēng),點(diǎn)M為邊AC上的一個(gè)動(dòng)點(diǎn)(重合),點(diǎn)M關(guān)于AB所在直線(xiàn)的對(duì)稱(chēng)點(diǎn)為N,△CMN的面積為S.
(1)求∠CAD的度數(shù);
(2)設(shè)CM=x,求S與x的函數(shù)表達(dá)式,并求x為何值時(shí)S的值最大?
(3)S的值最大時(shí),過(guò)點(diǎn)C作EC⊥AC交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接EN(如圖2),P為線(xiàn)段EN上一點(diǎn),Q為平面內(nèi)一點(diǎn),當(dāng)以M,N,P,Q為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件NP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南)如圖1,拋物線(xiàn)y=-
23
x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為(2,0),tan∠BAO=2,以線(xiàn)段BC為直徑作⊙M交AB與點(diǎn)D,過(guò)點(diǎn)B作直線(xiàn)l∥AC,與拋物線(xiàn)和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).
(1)求該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)和線(xiàn)段EF的長(zhǎng);
(3)如圖2,連接CD并延長(zhǎng),交直線(xiàn)l于點(diǎn)N,點(diǎn)P,Q為射線(xiàn)NB上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合),線(xiàn)段PQ與EF的長(zhǎng)度相等,連接DP,CQ,四邊形CDPQ的周長(zhǎng)是否有最小值?若有,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo)并直接寫(xiě)出四邊形CDPQ周長(zhǎng)的最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案