如圖,在直角坐標系xoy中,O是坐標原點,點A在x正半軸上,OA=cm,點B在y軸的正半軸上,OB=12cm,動點P從點O開始沿OA以cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BO以2cm/s的速度向點O移動.如果P、Q、R分別從O、A、B同時移動,移動時間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O‘與AB交于點M,當t為何值時,PM與⊙O‘相切?
(3)寫出△PQR的面積S隨動點移動時間t的函數(shù)關(guān)系式,并求s的最小值及相應(yīng)的t值.
(4)是否存在△APQ為等腰三角形,若存在,求出相應(yīng)的t值,若不存在請說明理由.
解:(1)在Rt△AOB中:
tan∠OAB=
∴∠OAB=30°
(2)如圖,連接O‘P,O‘M. 當PM與⊙O‘相切時,有∠PM O‘=∠PO O‘=90°,
△PM O‘≌△PO O‘
由(1)知∠OBA=60°
∵O‘M= O‘B
∴△O‘BM是等邊三角形
∴∠B O‘M=60°
可得∠O O‘P=∠M O‘P=60°
∴OP= O O‘·tan∠O O‘P
=6×tan60°=
又∵OP=t
∴t=,t=3
即:t=3時,PM與⊙O‘相切.
(3)如圖9,過點Q作QE⊥x于點E
∵∠BAO=30°,AQ=4t
∴QE=AQ=2t
AE=AQ·cos∠OAB=4t×
∴OE=OA-AE=-t
∴Q點的坐標為(-t,2t)
S△PQR= S△OAB -S△OPR -S△APQ -S△BRQ
=
=
= ()
當t=3時,S△PQR最小=
(4)分三種情況:如圖11.
當AP=AQ1=4t時,
∵OP+AP=
∴t+4t=
∴t=
或化簡為t=-18
當PQ2=AQ2=4t時
過Q2點作Q2D⊥x軸于點D,
∴PA=2AD=2A Q2·cosA=t
即t+t =
∴t=2
當PA=PQ3時,過點P作PH⊥AB于點H
AH=PA·cos30°=(-t)·=18-3t
AQ3=2AH=36-6t
得36-6t=4t,
∴t=3.6
綜上所述,當t=2,t=3.6,t=-18時,△APQ是等腰三角形.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
4 |
1 |
8 |
14 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
a+2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com