【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.

【答案】
(1)證明:∵M(jìn)N交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F,

∴∠2=∠5,∠4=∠6,

∵M(jìn)N∥BC,

∴∠1=∠5,∠3=∠6,

∴∠1=∠2,∠3=∠4,

∴EO=CO,F(xiàn)O=CO,

∴OE=OF


(2)解:∵∠2=∠5,∠4=∠6,

∴∠2+∠4=∠5+∠6=90°,

∵CE=12,CF=5,

∴EF= =13,

∴OC= EF=6.5


(3)解:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形.

證明:當(dāng)O為AC的中點(diǎn)時(shí),AO=CO,

∵EO=FO,

∴四邊形AECF是平行四邊形,

∵∠ECF=90°,

∴平行四邊形AECF是矩形.


【解析】(1)根據(jù)角平分線的定義得到角相等,再由平行線的性質(zhì)得到內(nèi)錯(cuò)角相等,由等角對(duì)等邊得到EO=CO,F(xiàn)O=CO,即OE=OF;(2)由互為鄰補(bǔ)角的平分線互相垂直得到∠2+∠4=∠5+∠6=90°,根據(jù)勾股定理得到EF=13,求出OC的值;(3)根據(jù)矩形的判定方法可知,當(dāng)O為AC的中點(diǎn)時(shí)得到四邊形AECF是平行四邊形,再由有一個(gè)角是直角的平行四邊形是矩形判定即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)MAB的中點(diǎn),點(diǎn)PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MDME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC∠ACB90°,ACBCAEBC邊上的中線,過(guò)點(diǎn)CAE 的垂線CF,垂足為F,過(guò)點(diǎn)BBD⊥BC,CF的延長(zhǎng)線于點(diǎn)D.

(1)求證:AECD.

(2)AC12 cm,BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)袋中有3張形狀大小完全相同的卡片,編號(hào)為1,2,3,先任取一張,將其編號(hào)記為m,再?gòu)氖O碌膬蓮堉腥稳∫粡,將其編?hào)記為n.
(1)請(qǐng)用樹狀圖或者列表法,表示事件發(fā)生的所有可能情況;
(2)求關(guān)于x的方程x2+mx+n=0有兩個(gè)不相等實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F(xiàn),Q都在對(duì)角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為 1,在方格紙內(nèi)將ABC經(jīng)過(guò)一次平移后得到ABC,圖中標(biāo)出了點(diǎn)B 的對(duì)應(yīng)點(diǎn) B

(1)在給定方格紙中畫出平移后的ABC;

(2)線段 AA與線段 BB的數(shù)量和位置關(guān)系是___________;

(3)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線l1:y=﹣x2+bx+3交x軸于點(diǎn)A,B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過(guò)點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣ ).

(1)求拋物線l2的函數(shù)表達(dá)式;
(2)P為直線x=1上一動(dòng)點(diǎn),連接PA,PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線l2上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線MN∥y軸,交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過(guò)程中,線段MN長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB和△DCE均為等腰三角形,點(diǎn)A、D、E在同一條直線上,BCAE相交于點(diǎn)O,連接BE,若∠CAB=CBA=CDE=CED=50°。

1)求證:AD=BE;

2)求∠AEB! 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A,B,C,點(diǎn)A坐標(biāo)為(﹣1,0).

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,連接CD,點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn)(不與B,C重合),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),四邊形PCDB的面積最大?求出此時(shí)四邊形PCDB面積的最大值和點(diǎn)P坐標(biāo);
(3)在拋物線上的對(duì)稱軸上:是否存在一點(diǎn)M,使|MA﹣MC|的值最大;是否存在一點(diǎn)N,使△NCD是以CD為腰的等腰三角形?若存在,直接寫出點(diǎn)M,點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案